Strategy for Design and Implementation of Prognostic and Health Management Systems for Optimal Value

Amy Nordmark Systems Analysis Chief, Operational Military Engines October 07, 2010

The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

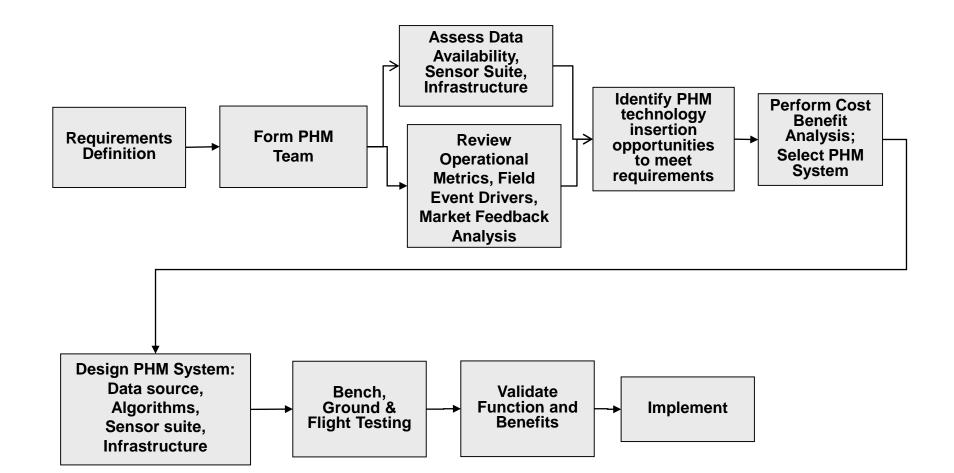
Changing the Way We Manage Engines

Prognostic and Health Management Tools Enable the Transition to Condition Based Maintenance

GO FROM:

- Single parameter "Total Accumulated Cycle" (TAC) lifing
- Scheduled inspections
- "Reactive maintenance"
- General troubleshooting

Enablers


- Usage Based Lifing
- Usage Driven Inspection
- Advanced Anomaly Detection & Fault Isolation

TO:

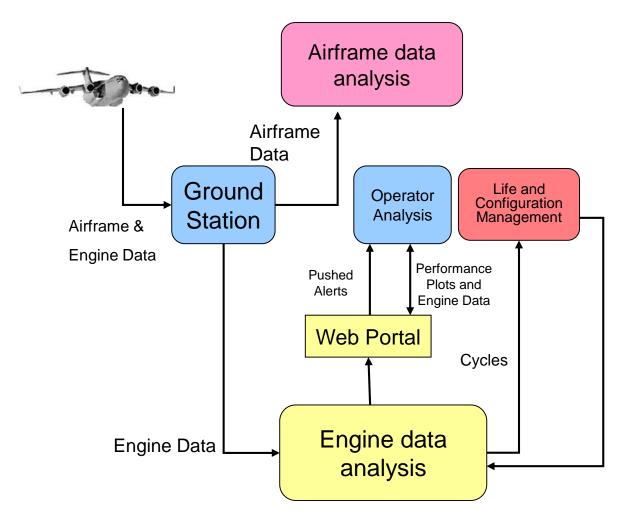
- Accumulated damage & remaining useful life calc
- Maintenance before failure through prediction
- On condition inspection and maintenance
- Targeted troubleshooting and maintenance success verification

How We Get There: Prognostics and Health Management Development Process

Form PHM Team

Implementation requires an integrated effort to produce a competitive product that delights the customer

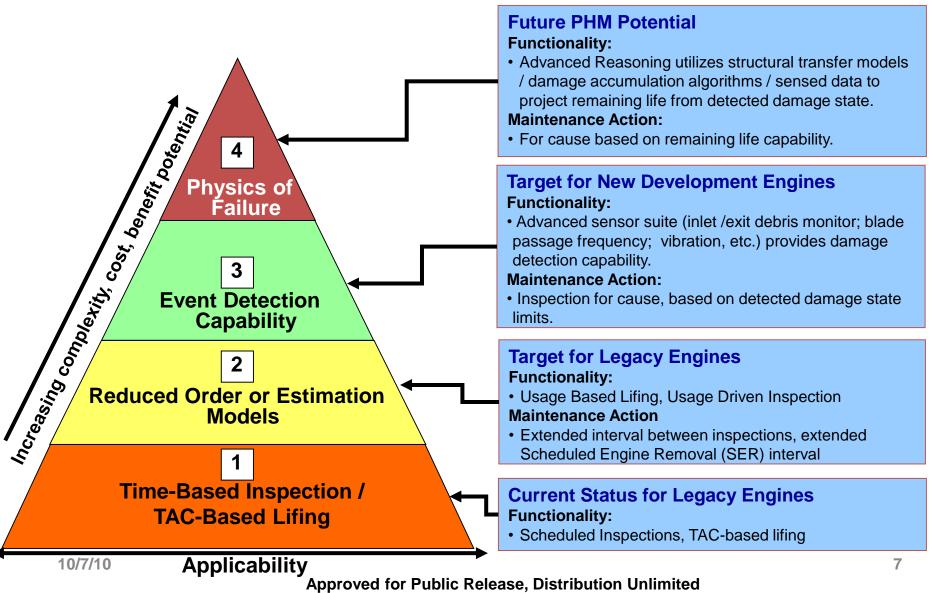
Assess Data Availability


Data availability influences benefit potential

Availability	Steady State Snapshot	Event Transient Snapshot	Full Flight Transient Data
Functionality	Gaspath Trending	Event Diagnosis, Fault Isolation	Physics Based Damage Accumulation
Benefit	 Correct anomaly prior to more severe secondary damage Streamlined troubleshooting Workscope optimization 	 Streamlined troubleshooting Improved root cause analysis 	 Safely consume design life

Assess Infrastructure

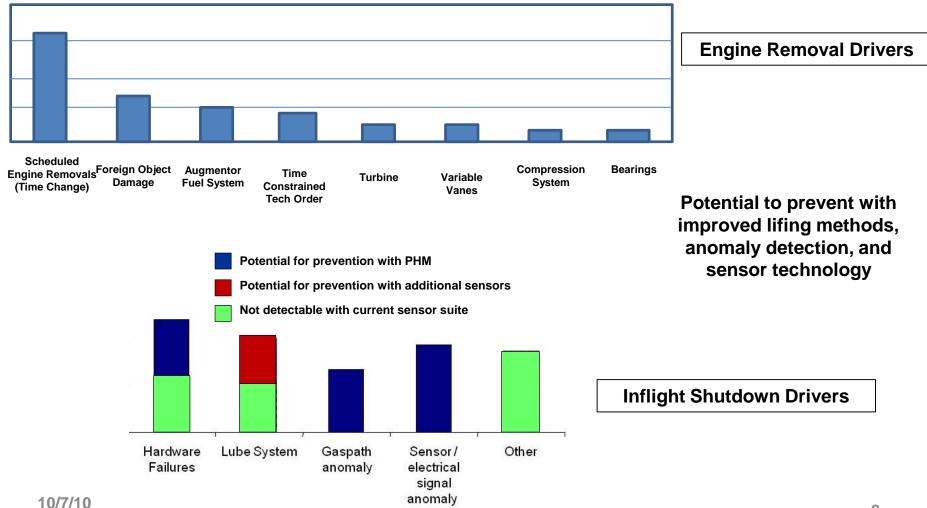
Information flow from analysis tools to engine management tools allows for full benefit potential



10/7/10

Target PHM Capability

Consider Data Availability, Sensor Suite, and Infrastructure

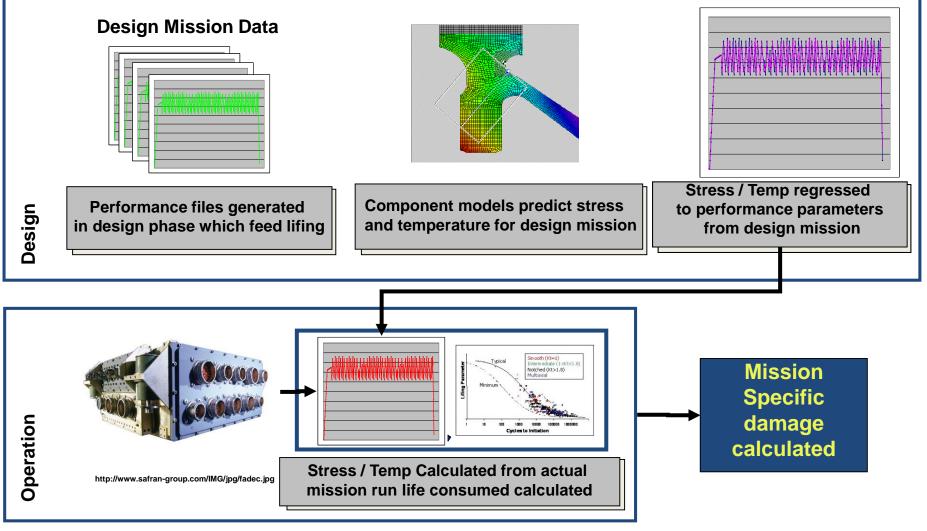


Review Engine Removal and Inflight Shutdown Drivers

Leverage Reliability, Maintainability, and Safety metrics to target technology insertion

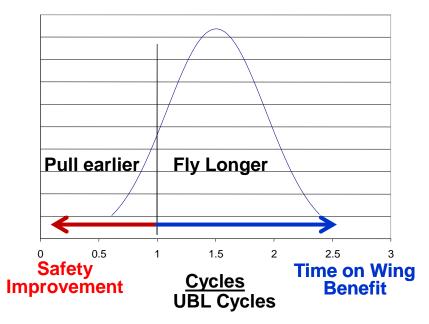
Notional Engine Removal Drivers

Identify Maintenance Manhour Drivers


All engine inspections reviewed to quantify potential PHM benefit

					PHM Initiatives				Quantify Impact on MMH and inspection tempo		
Notional T.O. Inspections	Interval	Minutes	/.	Promaty O	Outobili	012000 100 100 100 100 100 100 100 100 1	States States	→	per Year		54% reduction in MMH
Compressor Variable Vane insepction	200 hours	15	1						Maintenance Manhours		\
Electrical cables for connector security	200 hours	5							5		\mathbf{N}
Engine oil tank damage and oil leakage Ignition Exciter check	200 hours 200 hours	0.4			1				2		\mathbf{N}
Main Oil Filter for particles and damage	200 hours	20			1		_		ξ		$\mathbf{\lambda}$
Insp and lube primary convergent nozzle flexible shafts	200 hours	180					_		ar		7
Borescope Fuel Manifold for leaks	200 hours	30	1				_		Σ		
Ignition Systems Analysis	200 hours	180					_		ð		
Augmentor Module	200 hours	103	1						υ		
Combustor and fuel nozzles	50 hours	45	1						5		
Bearing seal air supply manifold assy for cracks	50 hours	30				1			29		
1st turbine rotor blades, 1st and 2nd vanes	50 hours	45		1		1			e		
Turbine rotor blades	50 hours	45		1		1			ť		
Visual main igniters	50 hours	30	1						ij	Tedev	
Visual main oil filter housing for cracks	50 hours	1				1			ŝ	Today	With PHM
Turbine duct and vane support for cracks	50 hours	1				1		_	2		
Bleed Air Manifolds	100 hours	10	1								
Borescope 3rd Turbine stator vanes	100 hours	45		1							
		Quanti inspe						-			Potential to align engine and aircraft phase inspections
	L					>	MMH/EFH				Notional Aircraft Phase Inspection
with a	t Feedba engine p ircraft p ould be	hase ii	nsp	ect	tion	ıld 15 15,	Σ		EFH	100 EFH 200 EFH Special Phase	400 EFH 1200 EFH Special Special 9
Approved for Public Pelease Distribution Unlimited							ctions	Inspections Inspection			

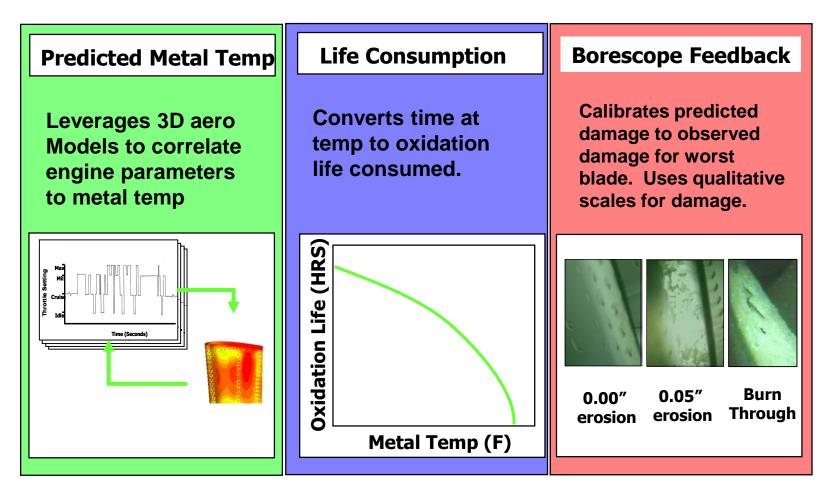
Identify PHM Technologies: Usage Based Lifing



Use actual mission data and regressed representations of design tools to more accurately track life consumption

PHM Technology: Usage Based Lifing

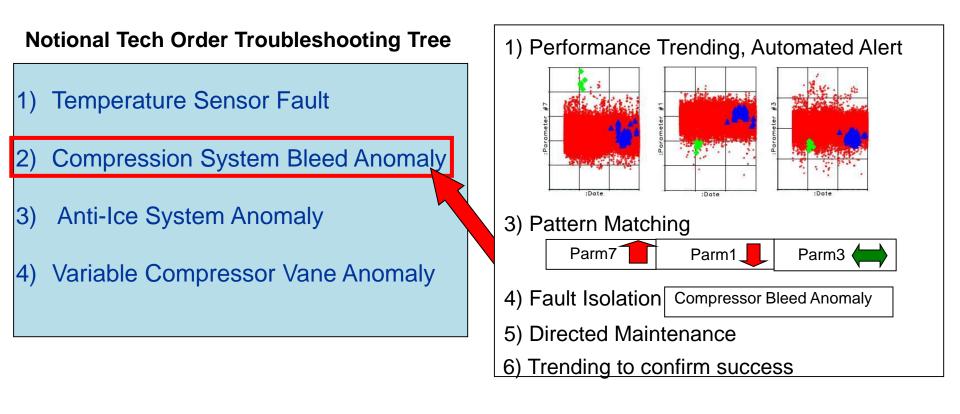
Study showed ~90% of engines are flown "easier" than design missions



- Conventional cycle based lifing estimates the life used by comparison to conservative design missions
- Usage Based Lifing calculates the life used for each engine, each Life Limited Part, based on actual usage

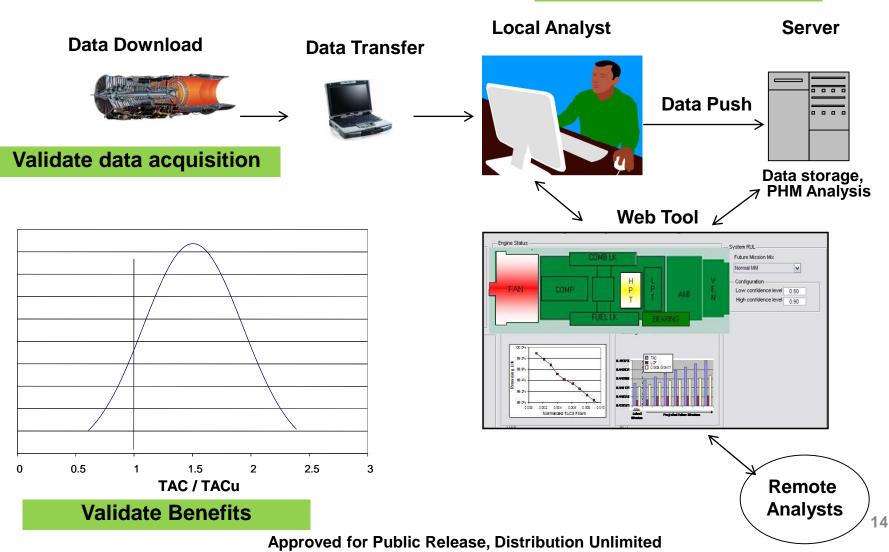
Usage Driven Inspection

Use actual mission data and damage models to manage turbine durability



Provide flexibility in inspection or maintenance action timing. Approved for Public Release, Distribution Unlimited

Advanced Anomaly Detection and Fault Resolution[®]

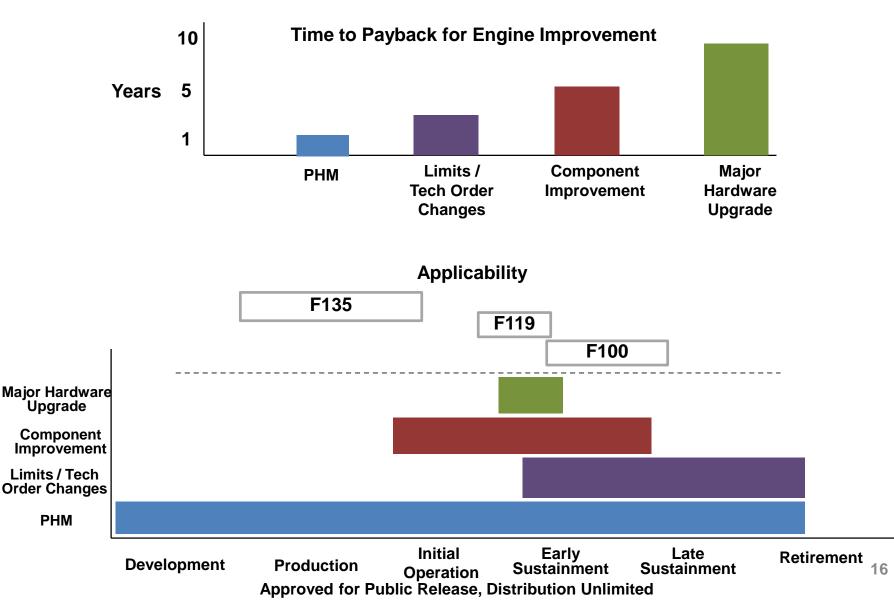

Use engine health trending parameters to target troubleshooting and verify success of maintenance actions

Validate PHM System in the Field

Field Evaluation Validates Benefits

Validate infrastructure

Positive Impacts to Operational Metrics


Expert knowledge of engine state provides safe operation at a reduced cost

	EHM Tools Benefits									
Fleet Metric	Usage Based Lifing (life limited parts)	Advanced Trending and Diagnostics	Usage Driven Inspection (Turbine Durability, Airfoil High Cycle Fatigue)	Advanced Sensors / Damage Detection						
Engine Total Ownership Cost										
Inflight Shutdown per 1000 Engine Flight Hour										
Maintenance Manhours per Engine Flight Hour										
Mean Time Between Removals										
Unscheduled Removals	Increased Rate	Reduced Rate	Prediction Only	Prediction Only						
Scheduled Removals	Positive Impact	No Impact	No Impact	No Impact						

PHM Provides Value Across Life Cycle

Early Payback Makes PHM A Wise Investment Strategy At All Phases

