Residual thermal deformation of the gas-turbine engine exhaust assembly

1

- The analyzed problem was reported during acceptance tests, when the turbine performance deteriorated after a number of starts.

- Part of the deterioration is due to the exhaust assembly deformation.

- Usually, after a few starts turbine performance stabilized.

- Obviously, the residual deformation is due to multicyclic thermal load, because of plastic behavior of the exhaust assembly material.

- The engine operation cycle consists of starting, engine operation and shutting down, which produces a nonuniform thermal cyclic load in the exhaust assembly.

- After the next operating cycle the exhaust assembly does not return to the same deformed original configuration because of the kinematic (cyclic) plasticity material behavior.

The thermal load on the exhaust assembly

Non-uniformly distributed in peripheral direction high temperature exhaust gases

The outer surfaces are exposed to the outer environment free convection

> The frontal surface is exposed to the turbine cooling air

Isotropic and kinematic hardening plasticity

- Isotropic hardening accounts for the change in size of the yield surface.
- Kinematic hardening, on the other hand, accounts for the translation of the yield surface.
- Combined hardening, on the other hand, accounts for both aforementioned effects.

Isotropic and kinematic hardening plasticity

- When a specimen undergoes loading and unloading for a number of cycles the stress-strain relationship takes an hysteresis loop form.
- Cyclic hardening or cyclic softening occurs if the subsequent loading-unloading hysteresis loops tend to converge.
- Non-proportional loading occurs when the relation between stress components increment is not a constant.
- Ratcheting is the accumulation of the plastic strain cycle-by-cycle for some stress amplitude with a non-zero mean stress.

An illustration of the
(a) cyclic hardening, cyclic softening and ratcheting effects in kinematic plasticity

Isotropic and kinematic hardening plasticity

A well developed material kinematic plasticity model must include a quantified description of:

- the correct non-linearity of stress-strain loop under cyclically stable condition
- the Bauschinger effect
- the cyclic hardening/softening effects
- the ratcheting effect

The chosen cyclic plasticity model was checked on the standard tensile test specimen fixed at both ends.

The specimen is loaded by the cyclic non-uniformly distributed thermal load.

Von-Mises stress

Von-Mises stress

5

- The goal of the presented study is to decrease residual thermal deformation after machine cooling (end of the cycle).
- It can be achieved by decreasing plastic deformation at the peak temperature deformed configuration.
- One possible way to decrease plastic deformation in our case is to remove (or weaken) the thermal load on the exhaust assembly.

Non-uniform cyclic thermal load is created by the following convection BC:

- By non-uniform peripheral distribution of the high temperature exhaust gases
- By presence of the cooling air at the front surface
- By free convection at the outer surface

Thermal boundary condition

Temperature distribution analysis results inside the exhaust assembly (existing design) thermal gradient regions

The effect of thermal insulation adding at the front surface on nozzle temperature distribution

The effect of thermal insulation at the front surface on nozzle plastic strain distribution

The effect of thermal insulation adding at the front surface as well as at the outer piping on nozzle temperature distribution

The effect of thermal insulation at the front surface as well as at the outer piping on nozzle plastic strain distribution

Temperature distribution analysis results inside the exhaust assembly when temperature distribution of the exhaust gases in the peripheral direction is uniform

The effect of uniform peripheral distribution of exhaust gases on nozzle plastic strain distribution

Analysis results:

- Use of the thermal insulation at the front surface of the exhaust assembly decreased non-uniformity in radial deformation at the peak temperature configuration by ~8.9%.
- Use of the thermal insulation at the front surface of the exhaust assembly as well as at the outer region decreased non-uniformity in radial deformation at the peak temperature configuration by ~21.5%.

Analysis results:

- Use of the thermal insulation at the front surface of the exhaust assembly increased non-uniformity in residual radial deformation at the cooled deformed configuration by ~15.4%.
- Use of the thermal insulation at the front surface of the exhaust assembly as well as at the outer region decreased non-uniformity in residual radial deformation at the cooled deformed configuration by ~30.1%.

Conclusions:

- Although a thermal insulation reduces the residual deformation by 30%, some steps must be taken to reduce temperature non-uniformity of the exhaust gases.
- The analysis results were verified by turbine tip clearance measurement. The same level of tip clearance non-uniformity was obtained which validate the chosen approach.