GE Aviation

Managing the Cost of Fuel

Supply, Demand, and Policy.

Tom Maxwell Mike Epstein

GE Aviation Portfolio... \$19.2 B

A leading aviation technology business

(\$ in billions)

imagination at work

(a- Includes GE's 50% of CFMI & EA CFMI is a 50/50 JV between GE and Snecma EA is a 50/50 JV GE and Pratt & Whitney

Military and Commercial Cost of Fuel

Managing The Cost of Fuel...

Managing The Cost of Fuel...

Why Aviation Cares About Biofuels...

Industry Growth Projections

CO2 Growth Projections

Emissions continue to grow...

+35% CO2 over last 15 yrs

EU ETS for aviation commencing 2012

Chief airline concern: money leaves aviation

GE analysis based on IATA, AEA, ERA, OAG data

US Policy...

ISSUES AT PLAY...

- Climate change legislation, Waxman-Markey.
- ARRA. American Recovery and Re-investment Act.
- Energy Bills EPACT05 and EISA 2007.
- USCAP GE charter member.

1

WHY POLICY MATTERS

Annual Installed U.S. Wind Power Capacity

Policy trajectory & lessons learned apply to biofuels GE Aviation 01-Sep-19

USAF Energy Strategy

Reduce Demand	Increase Supply	Change the Culture	
10% reduction by 2015	25% US based by 2016	Train all personnel by 2010	
,			5
			TERM
Upgrades, Kits	Coal, Gas, Bio to liqui	d Leadership	SHORT
SLEP, TF34 BRU	Fischer Tropsch		PH
			S
Deep Efficiency	Denowable, let Eval	Troining	
Base Efficiency	Renewable Jet Fuel	Training	
3% reduction / year	Initiating mil qualsupporting	Add to Academy training	Σ
	commercial qual end '10.		TERM
			H (D
ADVENT, HEETE	Co-processing.	KPP in every	ONG-
35% Efficiency gain	Advanced Cellulosic.	activity	L
\sim	\downarrow		
	aala ahiaatiyaa alana aa	d motrice	
imagination at work	oals, objectives, plans ar		. –
	AFPM 10-1.1. June 16 th , 2009		GE

Managing The Cost of Fuel...

Engine Fuel Consumption...

Commercial engine efficiencies driven by higher bypass ratios, higher core pressure & temperature ratios

Passenger / Tanker / Cargo ...

Enormous SFC potential for next-gen aircraft condition: Mach 0.84 / 35K feet / ISA

GEnx...Power for the 787 and the 747-8

Advanced Ceramic Material Technology

Material System Overview

- Silicon Melt Infiltrated Process for Ceramic Matrix Composite (CMC) Material Fiber
- Suppliers:
 - GE Aviation
 - Goodrich
- Manufacturing Process Scale-up In-Progress

Matrix

Technology Development Status

- Material and Process Defined
- Achieved NPI TG6 on Lead Component
- Established Material Specifications
- Working Full Material Database

6

Significant Engine Testing Planned In 2009-2011

Why Use Ceramic Matrix Composites (CMC's) For Turbine Engine Applications?

Significantly Higher Temperature Capability Than Metals

(Not Melted)

Simulated Engine

Test Results

CMC Withstands **Direct Flame Test**

Advanced Ceramic Shatters

CMC Survives High Velocity Particle Impact Tost

1/3 the weight of nickel based superalloys. Reduced parasitic cooling air for improved engine performance

F136 Engineering Status.

First production aircraft engine use of high temperature CMCs

First Engine To Test (625-004)

- Initiated one month ahead of schedule
 - -004 build 1 testing complete.
- Demonstrated successful engine operation and obtained critical validation data

Flight Test Clearance Process Started May 09

- Review began 18 months ahead of 1st flight
 - Synchronized with LM flight test schedule

NAVY Task Force Energy (TFE) program

SFC Technology

Demonstrator

- Program goal to demonstrate 3% SFC improvement vs F414-400.
 - EDE core plus technology to achieve –3%
 SFC at current thrust.
 - Based on F414 SFC Demonstrator configuration
- Complete testing and provide test data by September 2010
 - Generate plans for fleet qualification and technology insertion

F414 Biofuels Qualification

- Component testing initiated with Bio JP-5
- Ground tests planned early 2010.

F404 engine from an F/A-18 runs on biofuel in a Naval Air Systems Command test at the Aircraft Test and Evaluation Facility, Patuxent River, Md.

ADVENT – ADaptive Versatile ENgine Technology

Optimized fuel efficiency at ALL flight conditions. TRL 6 2012.

Variable Cycle GE ADVENT Concept

Maximizes Overall Efficiency by Optimizing Propulsive Efficiency & Thermal Efficiency.

ADVENT – ADaptive Versatile ENgine Technology

GE38 – Heavy Lift Power for the Sikorsky CH-53K (US Marine Corps) Airframe.

FETT testing complete ...170 hrs. Exceptional performance & SFC Margin

SFC best in class

- New Aero HPT
- 3D Aero PT

- 100% CFE738 Compressor Aero Improved erosion coating on blisks.
- FADEC with PHM.

Managing The Cost of Fuel...

FUEL...The Workhorse Fluid

Fuels in an aviation application:

• Provides an energy source, which is converted to mechanical energy and thrust.

But there's more...

- Cools airframe avionics, hydraulic fluids and system electronics.
- Provides proper stress in aircraft wings.
- Fuel-draulics....actuators, valves, variable geometry, etc.
- Provide an energy source to an on-board APU

Aviation Fuel Used For Multiple Purposes...Drives Complex Requirements and Exacting Specifications

Explosion of activity in the last 6 – 9 months...

US Navy...F414 Biofuels. Gripen.

CFMI...Continental Airlines. Biodiesel in Jet-A.

USAF...F-T Approval. Initiating Biofuels Qual.

GE90...Multiple Customer Requests

CF6...KLM Flight Test – November 23rd. 1st PAX flt.

CF34... Embraer, Amyris & Petrobras.

GE Research...DARPA Programs for HRJ, Cellulosic

Industry wide participation. Issues & Goals Vary.

ASTM Spec...Certification Process

20K Ga

Table 1 Properties Flash Point, Freeze Point, Energy Density, Thermal Stability

Fit For Purpose Properties Bulk Physical Properties, Electrical Properties, Storability, Auto-ignition.

Component Test

Combustor ignition & LBO, Altitude restart, Fuel Control, Fuel Nozzle Spray & Coking

Engine Test

Performance, Operability & emissions. Limited endurance. Flight Test if airframers require.

Engine Lean Blowout

ENGINE SPEED (RPM)

GE Aviation 01-Sep-19

23

Gen II BioFuels & Beyond...

- Incredible number and variety of new ideas surfacing no clear winner
- Concepts, technologies...renewable, non renewable, and in-between
- Durable policy, oil price movement, unique IP may drive opportunity

imagination at work

DARPA Bio Oil to Jet (BOTJ) Program

Lessons Learned

- DARPA broke multiple paradigms.
 - It's NOT just about F-T.
 - Alt fuel CAPX doesn't need to be \$Billions
 - Jet fuel can be produced from MANY sources
- Process H₂ significant cost factor.
 - "Buy" versus "produce" can help mitigate.
- Logistics significant cost factor.
 - Feedstock & product transportation.
 - Vertical integration is essential.
- Local feedstocks imply local solutions. leveraging multiple pathways to Jet-A.
 Next Steps
- Cellulose derived renewable fuel (HRJ)
 - Current DARPA funded program
- Scale up current process to show feasibility.

imagination at work

SUMMARY

Products that meet today's needs and tomorrow's challenges...

Petroleum

Bio

Natural Gas

Coal imagination at work

Aviation industry must address **DEMAND** (efficiency) and **SUPPLY** (alternatives).

Energy diversity is essential. Consistent, long term policies can be enabling.

GE is developing products and services to address these needs.

GE is committed to creating environmentally softer products.

F110

F136

GE38

T700 / CT7