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GE Aviation Portfolioé $19.2 B

Military engines Commercial Business &
& services engines General Aviation

®8 Revenue $4.2

Systems Unison Engine Commercial engine
Components services
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($ in billions) A leading aviation technology business

@ imagination at work (a- Includes GE& 50% of CFMI & EA 2
CFMI is a 50/50 JV between GE and Snecma GE Aviation

EA is a 50/50 JV GE and Pratt & Whitney 01-Sep-19




Military and Commercial Cost of Fuel
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Managing The Cost of Fuelé

Direct Costs. Price, Volatility, (Un) availability. Total cost of delivered fuel.
Environmental i direct & indirect costs.

POLICY DEMAND SUPPLY

Energy i Eco - Stimulug Efficiency Alt Fuels
US, EU New Product Intro Feedstock Diversity
DOD: USAF, Navy, DARPA Materials, Aerodynamics Qualification Path

US states Advanced cycles CO2 mitigation

ALEs
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Managing The Cost of Fuelé

Direct Costs. Price, Volatility, (Un) availability. Total cost of delivered fuel.
Environmental i direct & indirect costs.

POLICY DEMAND SUPPLY
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US states Advanced cycles CO2 mitigation
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Why Aviation Cares About Biofuelsé

Industry Growth Projections CO2 Growth Projections
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Emissions continue to growe
+35% CO2 over last 15 yrs

15 grams CO2 / PAX [/ kmé

ati to*Tel Aviv - 10,000 km. Yields about 1 ton per PAX.




EU ETS for aviation commencing 2012

Chief airline concern: money leaves aviation
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US Policyeé

ISSUES AT PLAYé

AClimate change legislation,
Waxman-Markey. ~

AARRA. American Recovery
and Re-investment Act. .

AEnergy Bills i EPACT05
and EISA 2007.

AUSCAP i GE charter

member.
(=

WHY POLICY MATTERS

Annual Installed U.S. Wind Power Capacity
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Project finance crunch
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Policy trajectory & lessons learned apply to biofuels s



USAF Energy Strategy

Reduce Demand Increase Supply Change the Culture
10% reduction by 2015 25% US based by 2016| |Train all personnel by 2010

Upgrades, Kits Coal, Gas, Bio to liquid Leadership

ORT TERM

SLEP, TF34 BRU Fischer Tropsch
Base Efficiency Renewable Jet Fuel Training
3% reduction / year Initiating mil qualé supporting Add to Academy training

commercial qual end d0.

ADVENT, HEETE Co-processing. KPP in every
35% Efficiency gain ~~ Advanced Cellulosic. activity
W } o

Clear goals, objectives, plans and metrics
imagination at work 9
AFPM 10-1.1. June 16t 2009 GE Aviation
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Managing The Cost of Fuelé

Direct Costs. Price, Volatility, (Un) availability. Total cost of delivered fuel.
Environmental i direct & indirect costs.

POLICY DEMAND SUPPLY

d Efficiency
US, EU New Product Intro Feedstock Diversity
DOD: USAF, Navy, DARPA Advanced cycles Qualification Path
US states Materials, Aerodynamics CO2 mitigation
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Engine Fuel Consumptioné

SFC

SFC

km/PAX.
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Overall Modern aircraft fuel consumption
Pressure Ratio IS between 3 and 5 liters /100
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Passenger / Tanker / Cargo é

Enormous SFC potential for next-gen aircraft
condition: Mach 0.84 / 35K feet / ISA
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http://www.boeing.com/commercial/777family/index.html
http://www.boeing.com/commercial/747family/index.html

GEnxé Power for the 787 and the 747-8




Advanced Ceramic Material Technology

Material System Overview Technology Development Status

¢+ Silicon Melt Infiltrated Process for Ceramic Matrix| e Material and Process Defined

Composite (CMC) Material Fiber « Achieved NPI TG6 on Lead Component

. Fiber Coating ) . . .
» Suppliers: » Established Material Specifications
» GE Aviation » Working Full Material Database
« Goodrich + Significant Engine Testing Planned In 2009-2011

» Manufacturing Process
Scale-up In-Progress Si-SiC |
Matriz

Why Use Ceramic Matrix Composites (CMC’s) For Turbine Engine Applications?

Fracture/Crack Resistunce . .
Significantly Better Lightweight
Than Conventional Ceramics

Significantly Higher Temperature
Capuability Than Metals

CMC [}"’
(Mot Melted) ;
;s
Metal Advanced Ceramic Shatters -‘ﬁ.g#
. Metal
Simulated Engine CMC Withstands _ CMC Survives CMC Weight
Test Results Direct Flame Test High IHEIDC'P:_ Pufrhcle Only 1f3 Metal Weight

1/3 the weight of nickel based superalloys. Reduced parasitic cooling
air for improved engine performance



F136 Engineering Status.

First production aircraft engine use of high temperature CMCs

First Engine To Test (625-004)
A Initiated one month ahead of schedule
A -004 build 1 testing complete.
A Demonstrated successful engine operation and obtained critical validation data

Flight Test Clearance Process Started May 09
A Review began 18 months ahead of 1st flight

A Synchronized with LM flight test schedule




NAVY Task Force Energy (TFE) program

SFC Technology
Demonstrator

A Program goal to demonstrate 3% SFC improvement vs
F414-400.
i EDE core plus technology to achieve i 3%
SFC at current thrust.
i Based on F414 SFC Demonstrator
configuration

A Complete testing and provide test data by September
2010
I Generate plans for fleet qualification and
technology insertion

F414 Biofuels Qualification

A Component testing initiated with Bio JP-5

F404 engine from an F/A-18 runs on biofuel in a Naval Air
A Ground tests planned early 2010. Systems Command test at the Aircraft Test and
Evaluation Facility, Patuxent River, Md.
AT estsieatlyo2™ qtr, 2010. 16

Photos courtesy US Navy G(')El'_“s"é%t_'(l)g



ADVENT T ADaptive Versatile ENgine Technology

Optimized fuel efficiency at ALL flight conditions. TRL 6 2012.

h = h

overall ~—

Propulsive h Therma

Variable Cycle GE ADVENT Concept
Maximizes Overall Efficiency by Optimizing Propulsive Efficiency & Thermal Efficiency.
h POWER DELIVERED TO THE VEHICLE POWER DELIVERED TO THE WORKING FLUID (AIR)
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ADVENT T ADaptive Versatile ENgine
Tectmotogy—"

Optimized fuel efficiency at ALL flight conditions. ==
2012.
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