8th Israeli Symposium
on Jet Engine and Gas Turbine

Technion, Haifa, November 19, 2009

“Turbine Cooling and Transient Tip Clearance Control:
Development Experience”

Boris Glezer, Optimized Turbine Solutions, San Diego, USA




SUBJECTS OF DISCUSSION

Introduction: Design Constraints for Engine Hot
Section Components

1. Engine Cooling Requirements, Cooling
Techniques and Means of Reducing Associated

Performance Penalties

. Engine Transient Thermal Behavior and Turbine
Blade Tip Clearance Control

. Uncertainty of Numerical Predictions and
Experimental Validation Practices
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I\/Iodern Turblne Hot Section for Aeroengme

Major Components: Combustor Liner and Transition - Nozzles (Vanes and Endwalls) —
Blades (Shrouded versus Unshrouded) -Discs/Preswirlers/ Seals - Turbine Stator Structure
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structural Design: Available Materials:

Company Prior Design Tradition static and Dynamic Stress Considerations

Lerodynamic Eequirements Operating Conditions

Weight Limitations \

Manufacturing and
Maintenance Requirements

Performance

Durability

Multidisciplinary Constraints Affecting Selection of
Turbine Cooling and Tip Treatment Design



1. ENGINE COOLING REQUIREMENTS,
COOLING TECHNIQUES AND MEANS
OF REDUCING PERFORMANCE

PENALTIES




1 Liner Film Cooling Options

Advanced Low Emission Options
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= From Compressor

LS. Patent 6,098,397

Liner Backside Cooling Using Dimpled Surface



(Tg-Tm)/(Tg-Tc)
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Effectiveness of Liner Cooling Methods
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Airfoils —Complexity of Modern Cooling Design
and Possible Degradation During Operation



Cooling Effectiveness
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* DISCHARGE COOLING FLOW AS HIGH UPSTREAM OF GAS PATH
AS POSSIBLE

* USE SHOWER HEAD COOLING FOR THE LEADING EDGE OF THE
FIRST STAGES OF AIRFOILS ONLY IF NECESSARY

* ATTEMPT TO DESIGN THE COOLING SYSTEM DISCHARGING AIR
AT A TEMPERATURE APPROACHING ALLOWABLE LOCAL METAL
SURFACE TEMPERATURE

* MINIMIZE MIXING LOSSES BY CLOSELY MATCHING VELOCITY
VECTORS BETWEEN MAINSTREAM AND DISCHARGED COOLING
FLOWS. THIS REQUIRES AS SMALL AS POSSIBLE PRESSURE LOSSES
IN THE INTERNAL COOLING PASSAGES

* AVOID AIR DISCHARGE ON SUCTION SIDE OF AIRFOIL
ESPECIALLY DOWNSTREAM OF THE THROAT

* REDUCE INTERNAL COOLING FLOWS UTILIZING THERMAL
BARRIER COATING (TBC)

* USE PRE-SWIRLING MECHANISM FOR BLADE COOLING SUPPLY
SYSTEM LOWERING THE RELATIVE TEMPERATURE OF THE
COOLANT AND REDUCING DISC FRICTION LOSSES

Main Design Rules for Minimizing Cooling Penalties




Suppression of a horseshoe vortex
Endwall 0.8% Endwall 2%

upstream film flow upstream film flow
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Effect of Upstream Film on Horseshoe Vortex



:

800
800
700
600
500
400 Impingement with
E’l Film Discharge
'Z 300 o’ .
Swirl Coolings”
200 Impingement with Crussﬂu:ﬁ;f :
Trip strips
smooth Channe
100
10,000 100,000

Comparison of HT Performance for Various Blade
Cooling Techniques
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Schematics of Swirl (screw-shaped Vortex) Cooling of
Blade Leading Edge

(US patent 5603606, 1997)
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Unshrouded and Shrouded Blades



PRE-SWIRL ¢

Examples of Modern Disk Rim Seals and Preswirlers
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Example of brush seal
application on blade tip
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* Diameters 50- 600 mm

* Spans from 8mm to 15mm
<° Angles from 45 to 55 deg
: . S |* Temperatures up to 870 C

ST
vl
N
=
@)

(@)
&,

AP=4- 2 -
0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.9 ' AP= 4-5 kg/cm~ per seal-stage

DP/P \

Performance of Brush Seals Versus Labyseals



2. ENGINE TRANSIENT
THERMAL BEHAVIOR AND
TURBINE BLADE TIP

CLEARANCE CONTROL
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Blade Surface Static Pressure Distribution
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Defining Blade Tip Area and Leakage Path
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Effect of Tip Clearance on Turbine Efficiency



+ Differences in thermal radial growth between the turbine rotor assembly
. . - . .
I t I ‘( 1 B ld r I ( 1 | ﬁ R t ﬁ Rr and stator supporting structure during transients
ra‘n81en UI S + Relative axial rotor-to-stator thermal displacements in the cases when the

blade tips are flared.

+ Circumferential thermal distortion of the tip shroud support structure
resulting from non-uniform combustor exit temperatures during transient or
steady state operation.

Emergency Shutdo

ﬂR RPM [{lf * Bowing of tip shroud segments (due to radial temperature gradients across
0 the shroud wall.

RPM % \: * Variations of turbine inlet and cooling air temperatures

* Bearing housing distortion and variation of bearing clearance.

! I Main Thermal Factors Influencing Tip Clearance at Steady State

Elade Thermal Growth

R
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Typical Transient Rotor and Stator Growth
(Midsize Turbine)
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Laser Sensing/ Measuring System Schematics

. Pneumatic Clearance Measuring System

Tip Clearance Measurement Techniques
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Cruise Blade Tip-to-Seal Position

=

Takeoff Tip-to-Seal Position

Examples of Light Tip Seal Support and Potential
Active Tip Clearance Control



Thermally Matching Stator and Turbine Disks
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Effect of Thrust Bearing Position on TC Variation



Cirenrnferentially Interlocked Shroud Segrnents
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Potential Applications of Ceramics
for Tip Clearance Passive Control




Combined Heating/Cooling for Semi-active
Transient TC Control (s patents779436, 1998)
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Turbine Discs T'hermal Growth Control (proven Concept)



3. UNCERTAINTY OF ANALYTICAL
PREDICTIONS AND EXPERIMENTAL

VALIDATION PRACTICES
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*Variation in properties of materials ,;, “9,.“%,
. . SN
-Inaccuracy of available correlations 97,
« Manufacturing and assembly tolerances
« Uncertainty of instrumentation measurements

« Varying effects of operation in the field (surface roughness, type
and quality of fuel, deposits)

Inconsistent combustor temperature pattern factor

 Tolerance in expected radial temperature profile of the _
mainstream flow is applied as input for the turbine blade analysis

Sources of Uncertainty In Life Prediction




« Airfoil internal flow study- flow vis in up-scaled models
 Liquid crystal technique —internal HT

» Up-scaled film cooling rig -PSP application

« Airfoil hot cascade — validation of conjugate HT predictions
* Disc/rim seal/preswirler flow and HT rig

» Rotating rig — effects of buoyancy/ Coriolis forces on blade
Internal flow and heat transfer

« Other supporting rigs: flow benches, calibrating devices

Recommended Experimental HT Facility
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Similarity Parameters

*The solutions of the Navier-Stokes and energy equations for
compressible flow depend on a number of dimensionless groups
including Re, Pr, Ma, Tw/Tg and Cp/Cv

*Turbulence intensity (from past experience) emulation is required

*Full geometric similarity including internal features are required

* Pr, Tw/Tg and Cp/Cv can be matched exactly

« Airfoil Re inlet and Ma exit matching are satisfactory

Hot Cascade Test Section
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Pressure Sensitive Paint Application for Film Studies
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Rig Schematics and Analysis of Rim-Sealed Disc Cavity
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Waspaloy 5 hours oxidation exposure
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Natural Oxidation In Turbine Components




Concluding Remarks

« OPTIMIZED DESIGN FOR HOT SECTION GAS TURBINE
COMPONENTS REQUIRES CONSTANT COMPROMISE BETWEEN
LAWS OF PHYSICS, ECONOMICS AND HUMAN PSYCHOLOGY

* SKILFUL INTERDISCIPLINARY INPUT IS A KEY FOR SUCCESSFUL
DESIGN

« USUALLY THERE ARE MORE THAN ONE POSSIBLE SOLUTIONS TO
A PROBLEM ENCOURAGING NEW IDEAS AT EARLY DESIGN STAGE

 APRINCIPAL OF A “LOW HANGING FRUIT” AT LESSER RISK AND
IMPLEMENTATION COST IS USUALLY PREFERRED

« THE BEST NUMERICAL PREDICTIONS HAVE TO BE VALIDATED
EXPERIMENTALLY

« CREATIVITY WITH “OUT OF THE BOX” IDEAS IS A NECESSARY
ELEMENT OF ADVANCED DEVELOPMENT, EVEN IF IT PRODUCES A
SOLUTION THAT MIGHT APPEAR INITIALLY RISKY




