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The Challenge

 Diagnosis of a twin-spool turbofan, based 
on pressure and temperature 
measurements at different stations, FADEC 
variables (VBV, VSV, WFM, etc.), 
environmental conditions.

 Technique: reconstruction of station 
performance measures (efficiency 
measures, flow measures) at said stations.



The Information

 Black box (OEM-supplied) thermodynamic 
steady-state simulator

 Limited test-cell measurements of engine, 
used for parameter range estimation.
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The Mission

 Producing a simulator reconstructor (The 
Perdictor)
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The Goal

 The Predictor as a diagnostic tool for 
the real engine
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Is this a well-posed problem?

1. Existence ?

2. Uniqueness ?

3. Continuity ?

(Hadamard, 1902, 1923;

Tikhonov & Arsenin, 1977;

Morozov, 1993;

Kirsch, 1996;

Haykin, 1999)Generally: NO!
In practice:

•Prior knowledge about simulation type/problem nature

•Restraints on parameter combinations/distributions

•Parameters limited to localized working conditions

For Practical Purposes: WE’LL TRY!



There exist more well-posed

(Kandariya Visvanatha 
Mahadeva Temple, 
Khajoraho, India, 10th-
11th century AD)

But it works!

examples..



Predictor Implementation

 The Predictor (non-linear regression) was 
realized on feed-forward neural networks.

 Different predictor/NN for each 
performance parameter.
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Data Sets

 Two sets for training and testing of The 
Predictor.

 Sets to span spaces to be encountered:
 Performance parameters (engine integrity 

states) in all stations/cocktails thereof

 Engine operating states

 Environmental conditions

 Working with a simulator, manufacturing 
synthetic data with no limits on size, 
distribution (independence) and quality.



Data Sets

 Data sets were produced using extensive 
execution of the simulator under 
controlled input conditions, as to span the 
working conditions to be encountered.
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Predictor Training/Testing
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Data Sets Distribution Strategy

 Environment and engine control (e.g. N1) 
inputs were chosen to be uniformly 
distributed in ranges obtained from test-
cell data.
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Data Sets Distribution Strategy

 Performance parameters (efficiencies and flows) 
were chosen from two distributions, representing 
either “normal behavior” or “faulty behavior”

 “normal behavior” consisted of most values near 
their nominal expected value (scaler = 1.0), with 
exponential distribution with parameter μ= 0.001 
to the “left” of 1, accounting for less than ideal 
performance. 

 “faulty behavior” was chosen from a uniform 
distribution in the scaler range 0.95 – 1.0.

 Modeled parameter was uniform at interval 
0.95-1.0 according to target reconstruction range.



Data Sets Distribution Strategy

 e.g. Fan isentropic efficiency HISTOGRAM
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Fault Distribution Strategy

 Test set fault distribution assumed fault 
occurrence independence, resulting in sets with 
decreasing frequency of occurrence of multiple 
simultaneous faults.

 The number of simultaneous faulted parameters 
(not including the modeled parameter) was 
chosen at each data point, such that if a 
probability for a single faulted parameter is Pf, 
then the probability for n faults was Pf

n. 
Pessimistic values used for Pf were 0.1 and 0.5. 



Fault Distribution Strategy

 Fault distribution HISTOGRAM for Pf = 0.5
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Results

 e.g. Fan flow scaler (Pf = 0.5)
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Results

 e.g. Booster isentropic eff. scaler (Pf = 0.5)
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Results

 e.g. LPT flow scaler (Pf = 0.5)
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Conclusions

 The regression attempt has produced results 
whose 90th percentile deviation averaged
0.156%, exceeding requirements for detecting 
plausible fault performance degradations of 1% –
2%.

 The less precise regression has been achieved for 
LPT efficiency and flow parameters

 This feasibility study proved the capability of 
utilizing machine learning techniques to 
reproduce actual engine status from accessible 
measurements, at least in the simulator context.



ANY QUESTIONS?


