

Turbine Engine Diagnosis On the Reconstruction of Performance Parameters from Engine and FADEC Measurements

RSL Electronics LTD. November 2005

CFM56

AH-64 Hermes 450 UAV CH-53 UH-60

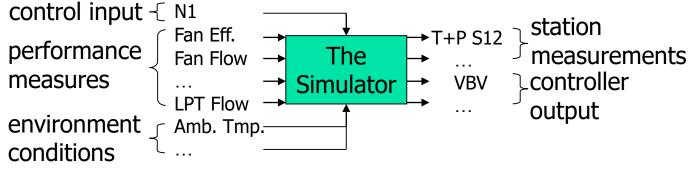
The Challenge

- Diagnosis of a twin-spool turbofan, based on pressure and temperature measurements at different stations, FADEC variables (VBV, VSV, WFM, etc.), environmental conditions.
- Technique: reconstruction of station performance measures (efficiency measures, flow measures) at said stations.

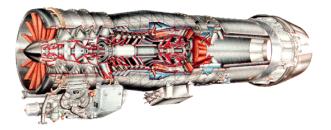


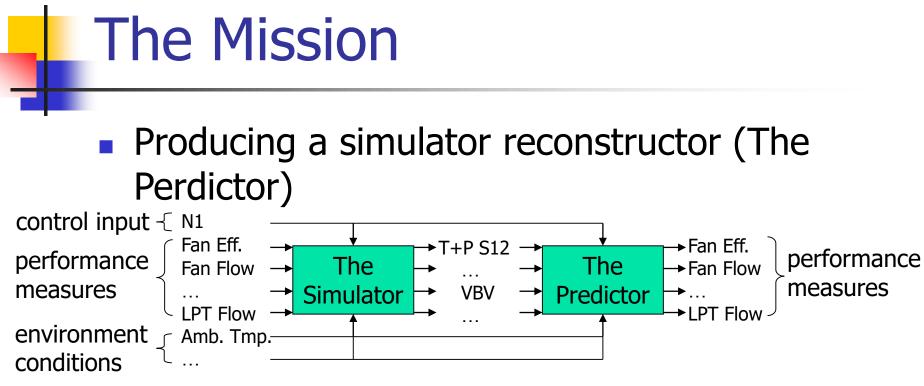
The Information

Black box (OEM-supplied) thermodynamic steady-state simulator

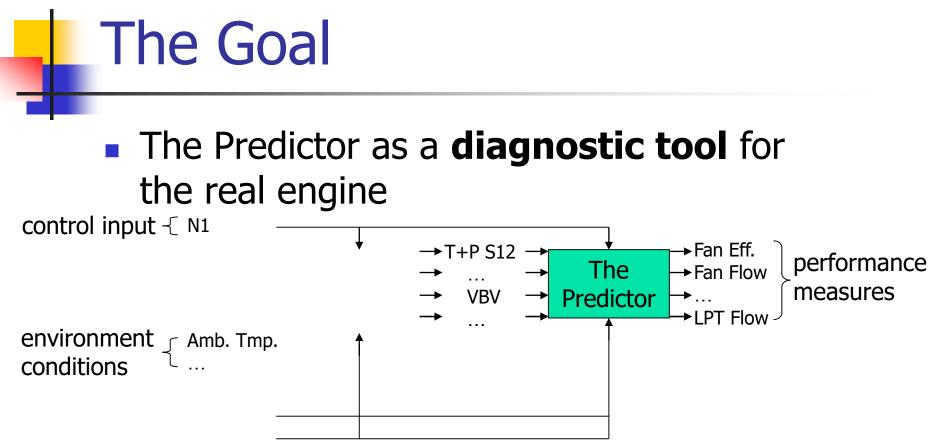


 Limited test-cell measurements of engine, used for parameter range estimation.











Is this a well-posed problem?

- 1. Existence ?
- 2. Uniqueness ?
- 3. Continuity ?
- Generally: NO!

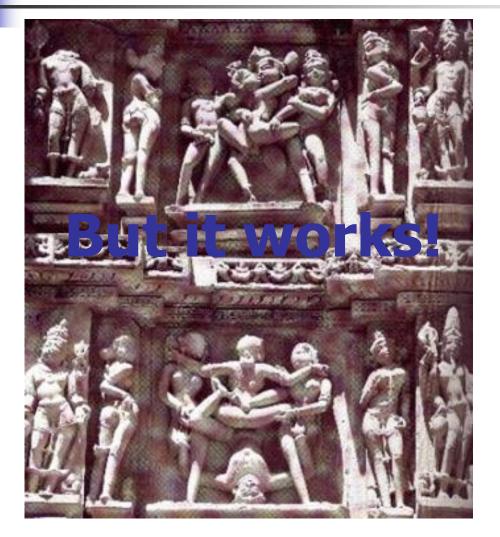
- (Hadamard, 1902, 1923;
- Tikhonov & Arsenin, 1977;
 - Morozov, 1993;
 - Kirsch, 1996;
 - Haykin, 1999)

In practice:

- •Prior knowledge about simulation type/problem nature
- •Restraints on parameter combinations/distributions
- •Parameters limited to localized working conditions

For Practical Purposes: WE'LL TRY!

There exist more well-posed

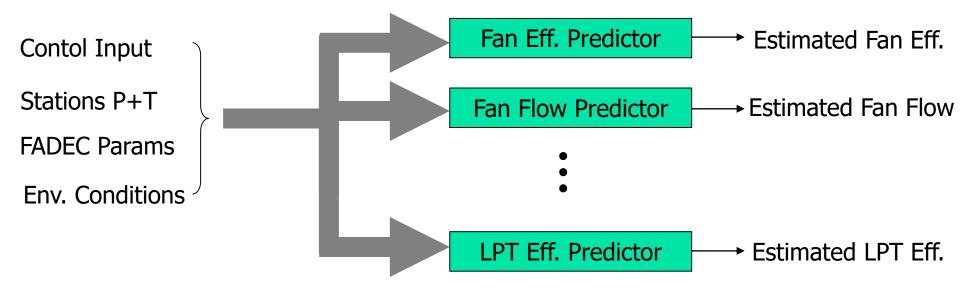


examples..

(Kandariya Visvanatha Mahadeva Temple, Khajoraho, India, 10th-11th century AD)

Predictor Implementation

- The Predictor (non-linear regression) was realized on feed-forward neural networks.
- Different predictor/NN for each performance parameter.

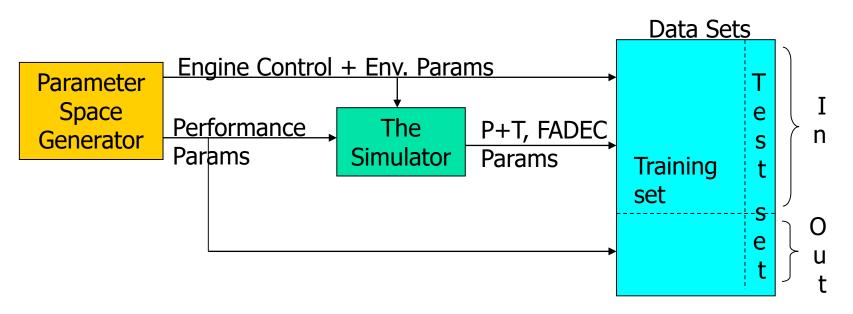


Data Sets

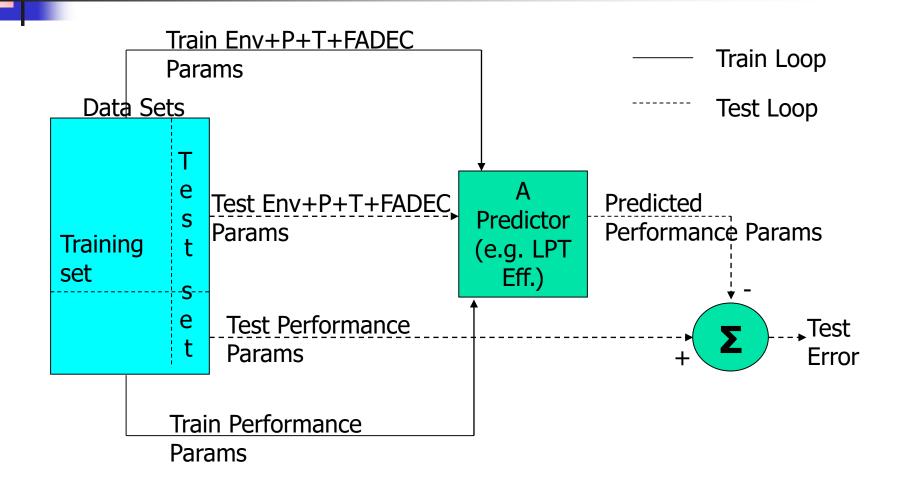
- Two sets for training and testing of The Predictor.
- Sets to span spaces to be encountered:
 - Performance parameters (engine integrity states) in all stations/cocktails thereof
 - Engine operating states
 - Environmental conditions
- Working with a simulator, manufacturing synthetic data with no limits on size, distribution (independence) and quality.

Data Sets

 Data sets were produced using extensive execution of the simulator under controlled input conditions, as to span the working conditions to be encountered.



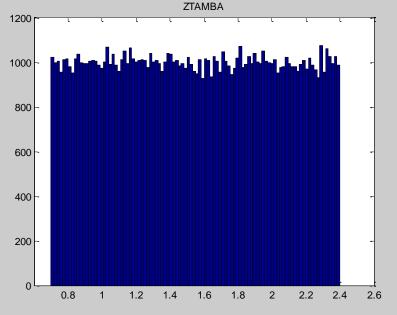
Predictor Training/Testing



Data Sets Distribution Strategy

Environment and engine control (e.g. N1) inputs were chosen to be uniformly distributed in ranges obtained from test-cell data.

e.g. ambient temperature histogram

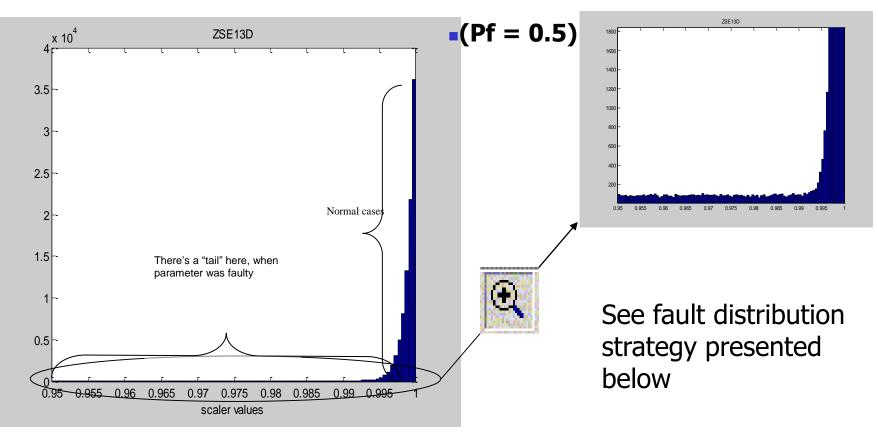


Data Sets Distribution Strategy

- Performance parameters (efficiencies and flows) were chosen from two distributions, representing either "normal behavior" or "faulty behavior"
- "normal behavior" consisted of most values near their nominal expected value (scaler = 1.0), with exponential distribution with parameter μ = 0.001 to the "left" of 1, accounting for less than ideal performance.
- "faulty behavior" was chosen from a uniform distribution in the scaler range 0.95 – 1.0.
- Modeled parameter was uniform at interval 0.95-1.0 according to target reconstruction range.

Data Sets Distribution Strategy

e.g. Fan isentropic efficiency HISTOGRAM

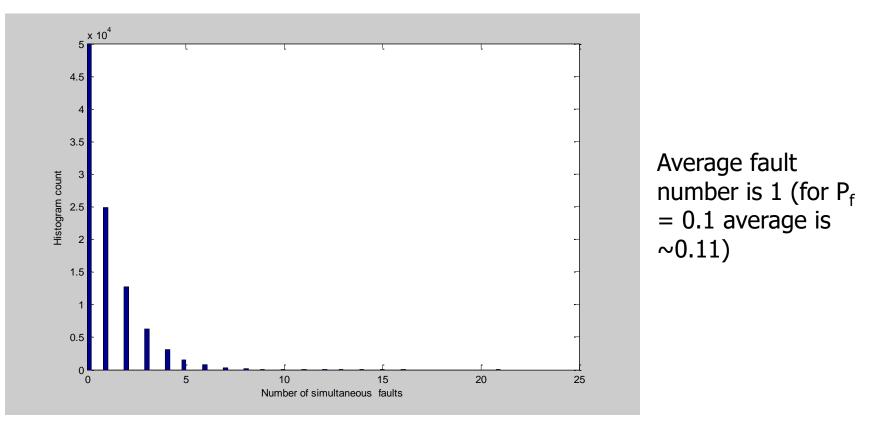


Fault Distribution Strategy

- Test set fault distribution assumed fault occurrence independence, resulting in sets with decreasing frequency of occurrence of multiple simultaneous faults.
- The number of simultaneous faulted parameters (not including the modeled parameter) was chosen at each data point, such that if a probability for a single faulted parameter is P_f, then the probability for n faults was P_fⁿ.
 Pessimistic values used for P_f were 0.1 and 0.5.

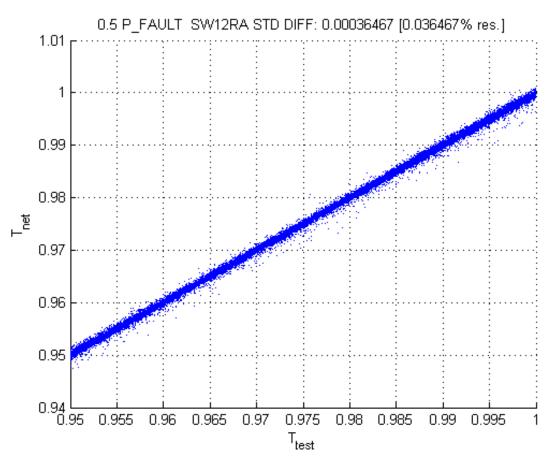
Fault Distribution Strategy

Fault distribution HISTOGRAM for P_f = 0.5



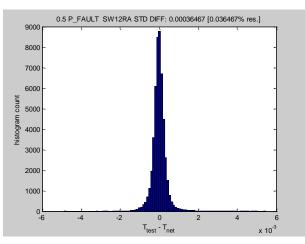
Results

• e.g. Fan flow scaler ($P_f = 0.5$)



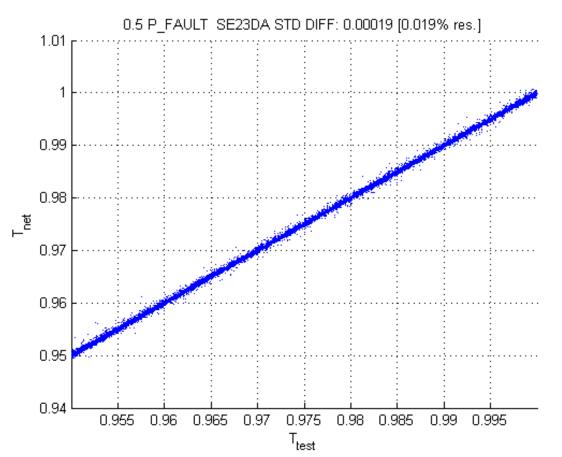
Graph shows reconstructed parameter value VS original value

90th Percentile Error: 0.050%



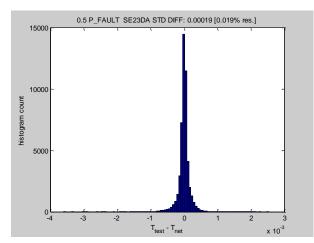
Results

• e.g. Booster isentropic eff. scaler ($P_f = 0.5$)



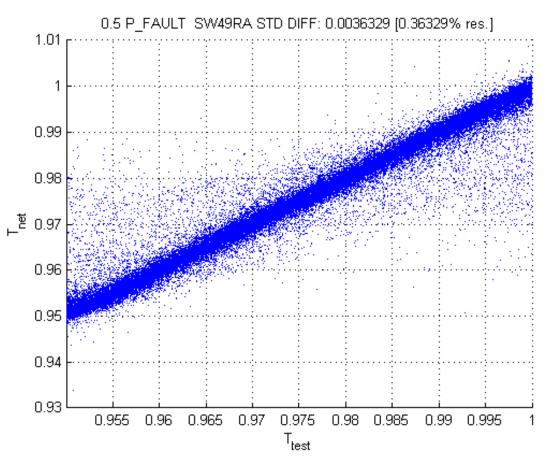
Graph shows reconstructed parameter value VS original value

90th Percentile Error: 0.025%



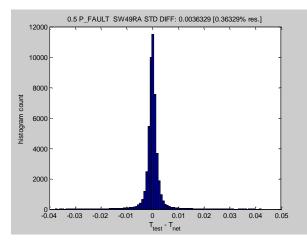
Results

• e.g. LPT flow scaler ($P_f = 0.5$)



Graph shows reconstructed parameter value VS original value

90th Percentile Error: 0.377%



Conclusions

- The regression attempt has produced results whose 90th percentile deviation averaged 0.156%, exceeding requirements for detecting plausible fault performance degradations of 1% – 2%.
- The less precise regression has been achieved for LPT efficiency and flow parameters
- This feasibility study proved the capability of utilizing machine learning techniques to reproduce actual engine status from accessible measurements, at least in the simulator context.

ANY QUESTIONS?

