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The Challenge

 Diagnosis of a twin-spool turbofan, based 
on pressure and temperature 
measurements at different stations, FADEC 
variables (VBV, VSV, WFM, etc.), 
environmental conditions.

 Technique: reconstruction of station 
performance measures (efficiency 
measures, flow measures) at said stations.



The Information

 Black box (OEM-supplied) thermodynamic 
steady-state simulator

 Limited test-cell measurements of engine, 
used for parameter range estimation.
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The Mission

 Producing a simulator reconstructor (The 
Perdictor)
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The Goal

 The Predictor as a diagnostic tool for 
the real engine
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Is this a well-posed problem?

1. Existence ?

2. Uniqueness ?

3. Continuity ?

(Hadamard, 1902, 1923;

Tikhonov & Arsenin, 1977;

Morozov, 1993;

Kirsch, 1996;

Haykin, 1999)Generally: NO!
In practice:

•Prior knowledge about simulation type/problem nature

•Restraints on parameter combinations/distributions

•Parameters limited to localized working conditions

For Practical Purposes: WE’LL TRY!



There exist more well-posed

(Kandariya Visvanatha 
Mahadeva Temple, 
Khajoraho, India, 10th-
11th century AD)

But it works!

examples..



Predictor Implementation

 The Predictor (non-linear regression) was 
realized on feed-forward neural networks.

 Different predictor/NN for each 
performance parameter.
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Data Sets

 Two sets for training and testing of The 
Predictor.

 Sets to span spaces to be encountered:
 Performance parameters (engine integrity 

states) in all stations/cocktails thereof

 Engine operating states

 Environmental conditions

 Working with a simulator, manufacturing 
synthetic data with no limits on size, 
distribution (independence) and quality.



Data Sets

 Data sets were produced using extensive 
execution of the simulator under 
controlled input conditions, as to span the 
working conditions to be encountered.
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Predictor Training/Testing
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Data Sets Distribution Strategy

 Environment and engine control (e.g. N1) 
inputs were chosen to be uniformly 
distributed in ranges obtained from test-
cell data.
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Data Sets Distribution Strategy

 Performance parameters (efficiencies and flows) 
were chosen from two distributions, representing 
either “normal behavior” or “faulty behavior”

 “normal behavior” consisted of most values near 
their nominal expected value (scaler = 1.0), with 
exponential distribution with parameter μ= 0.001 
to the “left” of 1, accounting for less than ideal 
performance. 

 “faulty behavior” was chosen from a uniform 
distribution in the scaler range 0.95 – 1.0.

 Modeled parameter was uniform at interval 
0.95-1.0 according to target reconstruction range.



Data Sets Distribution Strategy

 e.g. Fan isentropic efficiency HISTOGRAM
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Fault Distribution Strategy

 Test set fault distribution assumed fault 
occurrence independence, resulting in sets with 
decreasing frequency of occurrence of multiple 
simultaneous faults.

 The number of simultaneous faulted parameters 
(not including the modeled parameter) was 
chosen at each data point, such that if a 
probability for a single faulted parameter is Pf, 
then the probability for n faults was Pf

n. 
Pessimistic values used for Pf were 0.1 and 0.5. 



Fault Distribution Strategy

 Fault distribution HISTOGRAM for Pf = 0.5
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Results

 e.g. Fan flow scaler (Pf = 0.5)
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Results

 e.g. Booster isentropic eff. scaler (Pf = 0.5)
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Results

 e.g. LPT flow scaler (Pf = 0.5)
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Conclusions

 The regression attempt has produced results 
whose 90th percentile deviation averaged
0.156%, exceeding requirements for detecting 
plausible fault performance degradations of 1% –
2%.

 The less precise regression has been achieved for 
LPT efficiency and flow parameters

 This feasibility study proved the capability of 
utilizing machine learning techniques to 
reproduce actual engine status from accessible 
measurements, at least in the simulator context.



ANY QUESTIONS?


