PIV Investigation of a High Speed Centrifugal Compressor Diffuser: Spanwise and Loading Variations

Beni Cukurel

School of Mechanical Engineering Purdue University West Lafayette, Indiana

Currently at von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Belgium

Funded in part by Rolls-Royce Corporation, Indianapolis

Centrifugal Compressors

- Some Advantages of Centrifugal Compressors
 - Compact, Light Weight
 - Lack of Mechanical Friction
 - Lower Maintenance, Higher Reliability
 - Simplicity and Ruggedness
 - Higher Pressure Ratio per Stage
 - mechanism of energy transfer being less dependent on relative diffusion
- Favored for Small gas Turbine Engines
- Complexity
 - Three dimensional Flow Field
 - Viscous forces are important
 - Highly unsteady
 - Impeller-Diffuser Interaction
- The future of small gas turbines rely on higher efficiency and pressure ratio centrifugal compressors

(%)

9th Israeli Symposium on

Centrifugal Compressors

Introduction & Objective

Low momentum fluid (wake)

Unsteady, highly viacous 3D flov Diffuser vanes

Exducer

Inducer

potential field

Diffuser

- An efficient diffuser is essential to the performance, durability and operability of a centrifugal compressor stage.
 - Often the flow range of a centrifugal compressor is limited by stall or choke of the vaned diffuser.
- The effects of the diffuser geometry on the compressor stage are hard to predict
 - Coupling between the impeller and diffuser
 - Analysis as isolated components unrealistic
 - Impeller exit flow is a function of diffuser potential field
 - Diffuser geometry
 - Unsteady diffuser loading
 - Produced by the impeller
 - Enhances the value of empirical data
 - Performance
 - Durability

Objective: Characterize the circumferential variations along with spanwise distribution at several loading conditions for the diffuser flow field

Research Compressor

9th Israeli Symposium on Jet Engines

21.65cm			
14.2cm			
15 w/ splitters			
48,450 rpm			
50°			
WEDGE DIFFUSER			
23.67cm			
34.5cm			
1.38cm			
22			
1.094			
79.4 [°]			
7.85 [°]			

•High efficiency, pressure ratio compressor

-Impeller exit flow/diffuser entry flow field typical of modern transonic compressors

Experimental Method

• Loading Conditions

Loading	N _{cor}	m _{cor}	PR
Low	101.87%	2.326	4.045
Nominal	101.23%	2.296	4.241
Pre-stall	101.08%	2.023	4.556

- Spanwise Locations
 - 25% from hub
 - 50% from hub
 - 75% from hub
- 5 relative diffuserimpeller posns (delays)
 - 2 blade passages
 - 1 full blade & 1 splitter blade
 - 20% increments

9th Israeli Symposium on

Jet Engines

Particle Image Velocimetry (PIV)

Components

- Sub-Micron Flow Tracking Particles
 - DiEthyl Hexyl Sebacate (DEHS)
 - d=0.25µm
 - In regions bounded by the sonic velocity:
 - up to 1.09% of the true velocity for 0.5mm flow features
- Planar Illumination
 - Converging Light Sheet with Thickness Tailoring
- Double Pulsed Nd:YAG Laser
- Double Exposure Digital Camera
- Data Processing
 - Iterative multi grid cross correlation routine with window offsetting
 - 200 Images acquired for Ensemble Average
 - 25 valid vectors for interrogation region to report a velocity

Impeller Discharge Flow

Vaneless Space

Impeller-Diffuser Interaction Overview

Nominal Loading – Near Hub

9th Israeli Symposium on Jet Engines

Lets take a look at these mentioned flow features in nominal loading, near hub measurement plane

- Semi-Vaneless Space Acceleration Region
 - Mach number is around 0.9
 - Flow is following the suction side vane
 - Consistent with geometry-driven acc. of the flow
 - Design criteria suggests avoiding supersonic flows
 - Shock structures/their adverse effects on boundary layer growth.
- Impeller Jet Flow
 - The impeller jet flow is characterized by deviation:
 - Flow angle: -8° from mean
 - Mach number: -15% from mean
- Prior to the throat
 - Flow decelerates from Mach 0.85 to 0.75
 - Partly a function of the area increase with increased radius
 - Main cause: Rapid adjustment zone
 - Two different types of flow fields interact
 - Jet flow: Large incidence & lower Mach
 - SS acceleration region: Smaller incidence & Higher Mach

Nominal Loading – Mid Span

- Mach number in the semi-vaneless space and the throat are elevated
 - Consistent with the higher momentum levels at mid-span
- Highly negative flow angle regions cease to exist
 - Gallier showed that the flow in the vaneless space became more uniform around the midspan
 - Jet flow reduces to -4° deviation from the mean flow
 - Minimum negative flow angle has become more tangential
- Diminishing effects of impeller jet flow in the mid span

Ma

Nominal Loading – Near Shroud

- Increase in overall Mach from mid-plane to shroud plane
 - Semi-vaneless space acceleration zone extends
 - Velocities downstream of the throat augments
 - No high/low momentum interaction zone
 - Effects of jet flow are diminished
- Artifact of the impeller wake ingression into the diffuser
 - Impeller wake associated with high velocity & smaller radial component
 - Lower incidence regions in near shroud, wrt mid-span
 - Decrease in incidence angle is 10°

Nominal Loading Animation

Nominal Loading-Phase Ave. Dist.

9th Israeli Symposium on Jet Engines

Averaged phase resolved PIV data – delay independent, circum. mean

- Large spanwise variation due to impingement of:
 - Low and high momentum flow produced by the impeller
 - Jet: Low momentum (high flow angle), concentrated near the hub
 - Wake: High momentum (low flow angle), concentrated near the shroud
- Upper vane pressure side / Lower vane suction side

Low Loading-Phase Ave. Dist.

- Higher Mach numbers compared to nominal loading
 - Expected with the increased mass flow rate
- Mach number increase is mainly in the hub and mid plane
 - Reduction in spanwise Mach variation
- The role of the upper and lower surface of the vanes reversed
 - Upper vane suction side / Lower vane pressure side

- From Mach 1.4 to 1.1 in a short distance
- Flow is turning "towards" itself
- → Oblique shock ($\beta \approx 56^{\circ}, \theta \approx 6^{\circ}$)

Normal shock (perp. diffuser walls)

followed by

Prestall Loading-Phase Ave. Dist.

- Along the span: General trend of increase in flow Mach
 - Increased spanwise variation in Mach number wrt lower loading conditions
- No throat shock/sub. flow (Max Mach # occurs at the semi-vaneless space)
- Operational limits of compressor are reached, possible endwall separation regions
 - Diffuser hub region is the most likely location
 - At the mid and shroud planes decreased chance of separation because of
 - Higher inlet flow Mach numbers
 - More favorable incidence imposed on the PS leading edge
 - Less non-deterministic unsteadiness in flow angle

Separation Bubble

- Separation Bubble
 - Seen prior in literature (Justen[1999], Dawes[1994], Krain[1984])
 - Explains:

9th Israeli Symposium on

Iet Engines

- The upper throat flow turning and accelerating
- Diffuser throat region acts as a convergent divergent nozzle
 - Rather than a simple increase in effective flow area
- Couldn't resolve the separation bubble in measurements
 - Seeding difficulty, much lower velocities (about 25%) relative to the mainstream flow [Krain 1984]
- Evidenced by the flow surrounding the separation zone
 - The bubble time scales is not phase locked to the impeller [Dawes 1994]
 - Observe through the increase in statistical variance in the ensemble averaged data

Separation Bubble at Nominal Load.

9th Israeli Symposium on Jet Engines

- Near Hub
 - High variance zone at the hub
 - Result of the mean flow deflecting due to a transient leading edge bubble
 - Locally this portion of the vane is aerodynamically suction surface
- Mid Span
 - Reduced magnitude wrt the hub separation
- Near Shroud
 - High variance region does not exist
 - Occurrences in this axial plane are mostly impeller phase locked
 - In agreement with incidence angle, locally pressure surface

Mid-plane

Separation Bubble at Prestall Load.

9th Israeli Symposium on Jet Engines

- Near Shroud
 - Variance seems as low as in the prior lower loading condition
- Near Hub
 - Large high variance zone
 - Indicates major unsteadiness, not phase locked to impeller
 - Precursors of compressor stall
 - Nominal loading: Small separation bubble
 - Higher loading: Highly separated flow
 - Hub flow is breaking down as the compressor is throttled
- Mid span
 - Variance lower than in nominal loading
 - As the hub becomes separated & has more blockage
 - May cause the fluid to rush in to other spanwise locations
 - » Locally increase the mass flow rate
 - » Create more favorable incidence

Mid-plane

Summary & Conclusions

- In Diffuser Flow Field, Strong momentum variations still exist in spanwise and circumferential directions
- Vaned diffuser flow field
 - Upstream of throat
 - Significant unsteadiness phase-locked to impeller position
 - Downstream of throat
 - Unsteadiness decayed more rapidly
- Circumferential variations
 - Increased near the hub: Due to multiple flow features (jet/wake) inherent to the system
 - Near Shroud region: Circumferential variations are of lesser magnitude
- Spanwise variations are due to
 - Low and high momentum flow produced by the impeller
 - Low momentum (high flow angle), concentrated near the hub
 - High momentum (low flow angle), concentrated near the shroud
 - Variations are enhanced for higher loading conditions
 - Towards stall, the flow breaks down in diffuser hub region
- Diffuser throat structures vary significantly with loading, spanwise location and relative impeller position

9th Israeli Symposium on Jet Engines

QUESTIONS?