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Aircraft Survivability

It has been observed that linear changes in aircraft survivability produce
exponential changes in force effectiveness and aircraft attrition rates. Thus,
stealth technology helps aircraft to avoid high aircraft loss rates and complete
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Infrared Signatures Sources in a Helicopter

Exhaust plume, exhaust duct, tail boom heated by exhaust plume
and the direct view of hot engine parts like turbine blades. Engine
parts at a temperature of 600-700°C.
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| Missile Type Soviet Block Missile Western Missiles
Surface to Air SA-7, SA-9, SA-13, SA-14, Chaparral, Mistral, Redeye, Stinger
(SAM) SA-16, SA-18
Air to Air AA-2, AA-3, AA-5, AA-6, AA- AIM 4D, AIM 9L/M (Sidewinder),
(AAM) 8, AA-10, AA-11, PL-2, PL- | ASRAAM, MICA, Mistral, Python-3, R.530,
5B, PL-7 R.550, Shafrir, Stinger

Common heat-seeking missiles and their origin




Plume IR Signature Modelling
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Spectral intensity from airc raft plume
for Boeing passenger aircraft
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La Rocca, A. J., “Artificial Sources,”
The Infrared Handbook, 1985
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Exhaust Plume Dilution and Mixang for Bell 205 Aircraft

A comprehensive methodology is presented to model the IR signature produced by
the aircraft exhaust plume and to evaluate its susceptibility against an IR guided
SAM.

The results qualitatively match well with the results available in the literature.

The prominent band for plume radiation are centered around 2.7 pum, 4.3 um, 5.5
um, 6.5 and 15 pm due to the emission by CO, , CO and H,O present in the
plume.

Since the exhaust plume and the atmosphere have same radiative participating
species, namely H,O, CO,, & CO, most of the IR radiation emitted by the plume is
absorbed in the intervening atmosphere.

Only the radiation emitted from the broadened wings of the plume emissive bands
prominent in the 4.15-4.2 um band reaches the missile IR detector in the non after
burning mode.

The aircraft is susceptible to ground based IR guided SAMs due to the radiation
emitted by its plume.
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F117-A, Night hawk
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Installation Sketch

Vertical tension posts

(21 per tailpipe)
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A Section A-A Section B-B




Bell 205 using Infrared Flares to
deceive an incoming IR missile
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Schematic of the basic Centre Body
Tailpipe used on Bell 205 (UH-1H)
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