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Aircraft Survivability

It has been observed that linear changes in aircraft survivability produce 
exponential changes in force effectiveness and aircraft attrition rates. Thus, 
stealth technology helps aircraft to avoid high aircraft loss rates and complete
t h e  m i s s i o n  o b j e c t i v e s  e f f e c t i v e l y 
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Exhaust plume, exhaust duct, tail boom heated by exhaust plume 
and the direct view of hot engine parts like turbine blades.  Engine 
parts at a temperature of 600-700oC.

Infrared  Signatures Sources in a Helicopter
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AIM 4D, AIM 9L/M (Sidewinder), 
ASRAAM, MICA, Mistral, Python-3, R.530, 

R.550, Shafrir, Stinger  

AA-2, AA-3, AA-5, AA-6, AA-
8, AA-10, AA-11, PL-2, PL-

5B, PL-7

Air to Air 
(AAM)

Chaparral, Mistral, Redeye, Stinger SA-7, SA-9, SA-13, SA-14, 
SA-16, SA-18

Surface to Air 
(SAM)

Western MissilesSoviet Block MissileMissile Type

Common heat-seeking missiles and their origin

The IR Threat



Plume IR Signature Modelling
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The Modeling Strategy
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CFD Simulation of the Exhaust Plume 
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Magnified view 

Direction of the Plume 

Plume center line 

Plume Mach number contours 
obtained from CFD  
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Plume static temperature contours 
obtained from CFD 



Validation of the Exhaust Plume Simulation 

Y/Rnz
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Validation of the Exhaust Plume Simulation 
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Plume emissive bands absorbed by 
the atmosphere
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Exhaust Plume  Solver Validation
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La Rocca, A. J., “Artificial Sources,”
The Infrared Handbook, 1985

Spectral intensity from airc`raft plume 
for Boeing passenger aircraft
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Lock-on Range due to the Plume
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• A comprehensive methodology is presented to model the IR signature produced by 
the aircraft exhaust plume and to evaluate its susceptibility against an IR guided 
SAM.  

• The results qualitatively match well with the results available in the literature.  

• The prominent band for plume radiation are centered around 2.7 µm, 4.3 µm, 5.5 
µm, 6.5 and 15 µm due to the emission by CO2 , CO and H2O present in the 
plume.  

• Since the exhaust plume and the atmosphere have same radiative participating 
species, namely H2O, CO2, & CO, most of the IR radiation emitted by the plume is 
absorbed in the intervening atmosphere.

• Only the radiation emitted from the broadened wings of the plume emissive bands 
prominent in the 4.15-4.2 µm band reaches the missile IR detector in the non after 
burning mode.

• The aircraft is susceptible to ground based IR guided SAMs due to the radiation 
emitted by its plume.

Exhaust Plume Dilution and Mixing for Bell 205 Aircraft
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Infrared Signature Suppression 
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F117-A, Night hawk

Exhaust pipe of F-117A 

F117 Nozzle Configuration for IR  Signature Reduction



Schematic of the basic Centre Body 
Tailpipe used on Bell 205 (UH-1H) 

Bell 205 using Infrared Flares to 
deceive an incoming IR missile 

Exhaust Plume Dilution and Mixing for Bell 205 Aircraft


