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1. OBJECTIVES AND MOTIVATION (1 of 3)

Benefits : Reducing 
Number of blades  
Production costs 
Engine weight 

Challenges at Low Re (high altitude cruise conditions):  

 Flow separation occurs
 Engine efficiency drops
 Fuel consumption increases

Designing Highly Loaded LPT blades :
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Flow Control techniques :

PASSIVE DEVICES (boundary layer trips)
Simple
Parasitic losses at high Re numbers

ACTIVE TECHNIQUES (Vortex Generator Jets 
(VGJs))

Harder to implement
Can be adjusted to operating range or turned off

1. OBJECTIVES AND MOTIVATION (2 of 3)
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Experimentally and computationally investigate 
flow control over highly loaded LPT airfoil L1A 
utilizing steady VGJs

Identify conditions where flow control is more 
efficient and explain flow physics behind that 

From CFD point of view: compare RANS 
(preferred by industry) with LES (more expensive) 
and with experiment, identify where those models 
perform well and were problems appear

Objectives

1. OBJECTIVES AND MOTIVATION (3 of 3)



Typical jet engine operation and ways to 
improve efficiency:

Bypass flow (blue) - 80% of the thrust
Core flow (red) - 20% of the thrust

LPT powers Bypass flow and
significantly effects fuel consumption
Hard to increase LPT efficiency
Reducing number of blades helps 
to reduce fuel consumption
Highly loaded LPT blades result 
in flow separation

OBJECTIVES AND MOTIVATION (1 of 6)
LPT AIRFOIL FLOW CONTROL
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Benefits : Reducing 
Number of blades  
Production costs 
Engine weight 

Challenges at Low Re (high altitude cruise conditions):  

Flow separation occurs
Engine efficiency drops
Fuel consumption increases

Designing Highly Loaded LPT blades :
OBJECTIVES AND MOTIVATION (2 of 6)
LPT AIRFOIL FLOW CONTROL

Suction Side

Pressure Side
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Flow Control techniques :

PASSIVE DEVICES (boundary layer trips)
 Simple
 Parasitic losses at high Re numbers

ACTIVE TECHNIQUES (Vortex Generator Jets (VGJs))
Harder to implement
 Can be adjusted to operating range or turned off

OBJECTIVES AND MOTIVATION (3 of 6)
LPT AIRFOIL FLOW CONTROL
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OBJECTIVES AND MOTIVATION (4 of 6)
LPT AIRFOIL FLOW CONTROL

Literature Review:
Experimental work: 

(Volino, 2002): On Pack B airfoil boundary layer separates downstream of the suction peak due to
the adverse pressure gradient. Transition to turbulence and flow reattachment might happen
downstream.

Bons et al., (2008), Volino et al., (2008): The L1A has higher loading and more prone to separation
than other LPT airfoils, where transition forced separated flow to reattach even at low Re. It is a
good airfoil for the flow control work, combining very high loading with a need for separation
control.
Bons et al., (2002), Volino (2003), McQuilling and Jacob (2004), Eldredge and Bons (2004), and
Volino and Bohl (2005): used VGJs on the Pack B LPT airfoil. Separation was eliminated, even at the
lowest Reynolds number considered. Pulsed jets were more effective. The initial disturbance
created by each pulse caused the boundary layer to attach. The turbulence effect was more
significant than the action of the vortices.
Volino et al., (2009): studied highly loaded L1A airfoil. VGJs were effective even at the lowest
Reynolds numbers. Pulsed jets performed better than steady jets. A pulsing dimensionless
frequency of F=0.28 was marginal for good control at moderate blowing ratios. Separation control
resulted in a 20% increase in lift and up to a 70% reduction in total pressure loss.
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CFD work:

Singh (2005): used LES for LPT cascade predictions at low Re numbers, where the flow separated
and never reattached.

Gross and Fasel (2008): used DNS, LES and RANS models to predict Pack B airfoil flows. Agreement
with experimental data was achieved in some instances, but significant differences were observed
in others. This was attributed to possible differences between the inlet flow conditions in the
experiment and computations.

Flow control is challenging for CFD because of its transitional nature in combination with highly
three dimensional flow around the jets.

Garg (2002): used RANS to predict Pack B flow with and without VGJs. Predicted correct separation
location in the baseline case (without VGJs) as well as showed that separation vanishes in the flow
control case as in experiment. However, the separated region and the wake were not well
predicted, which is common for RANS

Rizzetta and Visbal (2005): used LES to investigate the flow control with pulsed VGJs in the Pack B
cascade. For inlet Re = 25,000 and B=2 flow control helped to keep flow attached for an additional
15% of the chord. Although CFD flow field, in their work, considerably differed from experimental,
numerical and experimental time-mean velocity profiles were in a reasonable agreement

OBJECTIVES AND MOTIVATION (5 of 6)
LPT AIRFOIL FLOW CONTROL

Observations from previous work:
Direct Numerical Simulation (DNS) 
Large Eddy Simulation (LES)
Reynolds Averaged Navier-Stokes (RANS)
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Study the flow over highly loaded LPT airfoil L1A at different Re
to identify flow regimes where flow control is needed

Study effect of freestream turbulence on separation

Computationally investigate flow control over L1A airfoil
utilizing steady and pulsed VGJs and compare results with
Experimental data

Identify under which conditions (B, f, DC) flow control is more
effective and explain flow physics behind that

Compare RANS (preferred by industry) and LES (more
expensive) approaches to turbulence modeling with
experiment, to test which approach is appropriate for the flow
control type of problems

Objectives
OBJECTIVES AND MOTIVATION (6 of 6)
LPT AIRFOIL FLOW CONTROL
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Geometry
Linear

cascade of 
7 airfoils

Baseline
(No Jets)

Flow control
(row of VGJs on the  

airfoil’s suction surface)

Re and 
Blowing 
ratio

Re=25,000, B=0;
Re=50,000, B=0;

Re=100,000, B=0;
Re=300,000, B=0;

Re=25,000, B=0;
Re=100,000, B=0;
Re=300,000, B=0;

Re = 25,000: B=1 and B = 3
Re = 50,000: B=0.5 and B = 2

Re = 100,000: B=0.25 and B = 1

Turbulence
model

Inviscid SKW-sst, V2F,
Transition-sst

LES, Transition-sst

Frequency N/A N/A 3, 12 and 24 Hz

Duty Cycle N/A N/A 0%, 10% and 50%

CASES SIMULATED (1 of 1)
LPT AIRFOIL FLOW CONTROL

Re= UeLs /ν - exit Re number based

on nominal exit velocity from the cascade
and suction surface length
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Linear 
cascade
7 blades

Highly loaded LPT airfoil
designed at the Air Force
Research Laboratory (AFRL)
and designated L1A

Transitional flow with
separation at low Reynolds
numbers

Steady and Pulsed VGJs to
eliminate flow separation
and reduce losses

GEOMETRY AND BOUNDARY CONDITIONS (1 of 2)
LPT AIRFOIL FLOW CONTROL
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On all blades in cascade (CFD: one
blade with periodicity)
Located at suction peak
D = 0.8 mm
Spacing = 10.7D
Compound Angle

30° to surface
90° to main flow

Supplied from cavity in blade (CFD: jet
tube included in calculations)

Vortex Generator Jets
(a) (b)

Mainflow 
Into Page

Mainflow

Suction Side

Pressure Side

GEOMETRY AND BOUNDARY CONDITIONS (2 of 2)
LPT AIRFOIL FLOW CONTROL
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FLUENT commercial code with Finite-Volume Method 
URANS were used for the baseline study (no jets), Large Eddy 
Simulation (LES) was compared with URANS (Transition-sst 
model) for the flow control cases
Dynamic Kinetic Energy Subgrid-Scale Model was used with 
LES 
Incompressible flow (Ma < 0.1)
Third order discretization for Momentum and Turbulence 
equations, except for LES, where Bounded Central 
Differencing was used for the Momentum equations

NUMERICAL METHODS (1 of 3)
LPT AIRFOIL FLOW CONTROL
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Computational grid- URANS (Baseline) 

Trailing Edge
1,500,000 cells

Leading Edge

NUMERICAL METHODS (2 of 3)
LPT AIRFOIL FLOW CONTROL
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Airfoil wall in the 
vicinity of the jet exit

54 nodes in 
spanwise 
direction

Leading Edge

12,000,000 cells

Computational grid- LES and URANS (Flow Control)
NUMERICAL METHODS (3 of 3)
LPT AIRFOIL FLOW CONTROL

Trailing Edge

18



19

Definitions:

Re UeLs/    , exit Reynolds number

Ls suction surface length

Ue nominal exit freestream velocity,  
based on inviscid solution
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RESULTS (1 of 14)
LPT AIRFOIL FLOW CONTROL
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RESULTS (2 of 14)
LPT AIRFOIL FLOW CONTROL

Baseline (no jets)

Re=300,000
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Contours of u′/Ue, and velocity vectors 
(from Trans-sst model)

Suction 
Peak

Re=25,000 Re=100,000 Re=300,000

Separation

Suction 
Peak

Separation

Transition Transition

Suction 
Peak

Prediction of transition

RESULTS (3 of 14)
LPT AIRFOIL FLOW CONTROL

Baseline (no jets)
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RESULTS (4 of 14)
LPT AIRFOIL FLOW CONTROL

Comparison between CFD data (Trans-sst Model) 
and correlation for the start of transition 

Prediction of transition
Baseline (no jets)

Re θp - momentum thickness 
Re number at the pressure 
minimum location

Re pt - the Reynolds number 
based on the freestream 
velocity at the suction peak and 
the streamwise distance from 
the suction peak to transition 
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RESULTS (5 of 14)
LPT AIRFOIL FLOW CONTROL

Separated Flow

Separation with 
Reattachment Attached flow
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Flow Control: Model Validation
Grid independence study

Grid # Size 
(cells)

Number of grids 
in z direction

y+ ∆z+ ∆x+

4 1,500,000 15 <1 12.6 1 - 100

5 5,900,000 30 <1 6.3 0.4 - 52

6 11,900,000 54 <1 0.4 - 3.5 0.4 - 52

(Recommended values for LES are:
y+~2; ∆x+ ~ 50-150; ∆z+ ~ 15-40
(Piomelli and Chasnov))

∆t effect study

Some general recommendations:
∆t should be small enough to resolve the time-
scale of the smallest resolved eddies, such as:
U ∆t / ∆x ~ 2.5 or less (Fluent)

In this case: (based on freestream velocity and ∆x in 
the separated region)
U 0.0005 / ∆x ~ 9.30
U 0.0001 / ∆x ~ 1.86
U 0.00005 / ∆x ~ 0.93
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CFD - dt = 0.0005
CFD - dt = 0.0001
CFD - dt = 0.00005

∆t = 0.0001 s

Grid 6

RESULTS (6 of 14)
LPT AIRFOIL FLOW CONTROL
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Steady blowing VGJs

Re=50,000

Cp = 2(PT-P)/ρUe

Velocity profiles

RESULTS (7 of 14)
LPT AIRFOIL FLOW CONTROL

Flow Control
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LES in a better agreement with Exp.
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Steady blowing VGJs, Re=50,000

Mean X-velocity contours and velocity vectors (LES)

RESULTS (8 of 14)
LPT AIRFOIL FLOW CONTROL

Flow Control

Massively Separated flow at low B
Reduction in separation at high B
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28
Instantaneous isosurfaces of Vx=0.01 m/s (LES)

URANS

LES
B = 2

Steady blowing VGJs, Re=50,000

RESULTS (9 of 14)
LPT AIRFOIL FLOW CONTROL

Flow Control
RANS: larger separation bubble, 
do not show turbulence structures 
responsible for reattachment
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Q-criterion(Second Invariant of 
Velocity Gradient Tensor) 

5. RESULTS (9 of 12)
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LES

Instantaneous isosurfaces of Q-criterion colored by Vx

URANS

Steady blowing VGJs, Re=50,000

RESULTS (10 of 14)
LPT AIRFOIL FLOW CONTROL

Flow Control



B = 0.5

31

B = 2

Instantaneous isosurfaces of Q-criterion (LES)

Steady blowing VGJs, Re=50,000

RESULTS (11 of 14)LPT AIRFOIL FLOW CONTROL

Flow Control

Relaxed shear layer Energized shear layer
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RESULTS (12 of 14)
LPT AIRFOIL FLOW CONTROL

Flow Control
Pulsed VGJs, Re=50,000, 

effect of frequency
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f = 3 Hz
(F=0.07) f = 12 Hz 

(F=0.28)

f = 24 Hz
(F=0.56)

Case 1 2 3 4 5 6 7
Re/1000 25 50 100 25 50 50 50
B 1.0 0.5 0.25 1.0 0.5 0.5 0.5
DC % 10 10 10 10 10 10 50
f, Hz 3 3 3 12 12 24 12
Uaver, m/s 2.17 4.35 8.7 2.17 4.35 4.35 4.35
F 0.14 0.07 0.035 0.56 0.28 0.56 0.28
ψint, CFD 0.923 1.026 0.825 0.515 0.372 0.246 0.384
ψint Exp NA NA NA 0.346 0.356 0.237 0.313

Summary of all Pulsed Cases Examined. (NA = Not Available)

ψint total pressure loss integrated over the blade spacing

32



RESULTS (13 of 14)
LPT AIRFOIL FLOW CONTROL

Flow Control
Pulsed VGJs, Re=50,000, 

effect of Duty Cycle
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Case 1 2 3 4 5 6 7
Re/1000 25 50 100 25 50 50 50
B 1.0 0.5 0.25 1.0 0.5 0.5 0.5
DC % 10 10 10 10 10 10 50
f, Hz 3 3 3 12 12 24 12
Uaver, m/s 2.17 4.35 8.7 2.17 4.35 4.35 4.35
F 0.14 0.07 0.035 0.56 0.28 0.56 0.28
ψint, CFD 0.923 1.026 0.825 0.515 0.372 0.246 0.384
ψint Exp NA NA NA 0.346 0.356 0.237 0.313

Summary of all Pulsed Cases Examined. (NA = Not Available)

ψint total pressure loss integrated over the blade spacing
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Dimensionless streamwise velocity contours, Re = 50,000, B = 0.5, f=12 Hz, DC=10 %

Jet Location

RESULTS (14 of 14)
LPT AIRFOIL FLOW CONTROL

Flow Control

Pulsed VGJs, Re=50,000 

Steady Jet
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Conclusions (1 of 2)
LPT AIRFOIL FLOW CONTROL

Separation on the L1A airfoil occurs at low Re (≤100,000) with no
reattachment

At elevated freestream turbulence levels reattachment occurs at
Re = 100,000

Active flow control with steady VGJs helps to significantly reduce
separation for all Re at high B and is not effective at low B

URANS are capable of accurately predicting flow over an airfoil at
different Re

LES is needed in order to capture VGJs effect where URANS
(Transition-sst model) have difficulties
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Pulsing VGJs with low B helps to reduce or eliminate separation,
when steady blowing with the same B is not effective

Dimensionless frequencies of 0.28 and above result in significant
reduction or elimination of separation even at low B

Increasing pulsation frequency is more effective than increasing DC

Conclusions (2 of 2)
LPT AIRFOIL FLOW CONTROL

Future Work
Study effect of the wake of the upcoming airfoil on the
separation
Develop an algorithm where jet B, f, and DC will be adjusted
with flow regime and wake passing frequency
Develop RANS model capable of capturing VGJs effect
Conduct DNS study of the L1A airfoil flow control problem
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QUESTIONS
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