

Gas Turbine and Water-Vapor Compressor

Integrated CCHP System

Contents

- **1.** <u>**C**</u>ombined <u>**H**</u>eat and <u>**C**</u>ooling and <u>**P**</u>ower systems
- 2. Load fluctuations in CCHP systems.
- 3. Methods of water injection into Gas Turbines.
- 4. The Brayton intercooled cycle.
- 5. OCN TS 2000 Intercooled Gas Turbine.
- 6. The IDE water vapor heating / cooling compressor.
- 7. The CCHP system -integration of the 2 systems.
- 8. The CCHP system-integration of the gas turbine as the compressor driver and heat booster -no electrical power.

Water injection methods

1. <u>Compressor Inlet Water Spray</u> Evaporation Cooling Method

Used to restore degradation of power and thermal efficiency due to high temperature ambient conditions.

Useful in dry and hot atmosphere.

Limited by saturation conditions

2 <u>Wet Compression Method</u>

Spraying excess water 5 microns drops which are vaporized during compression

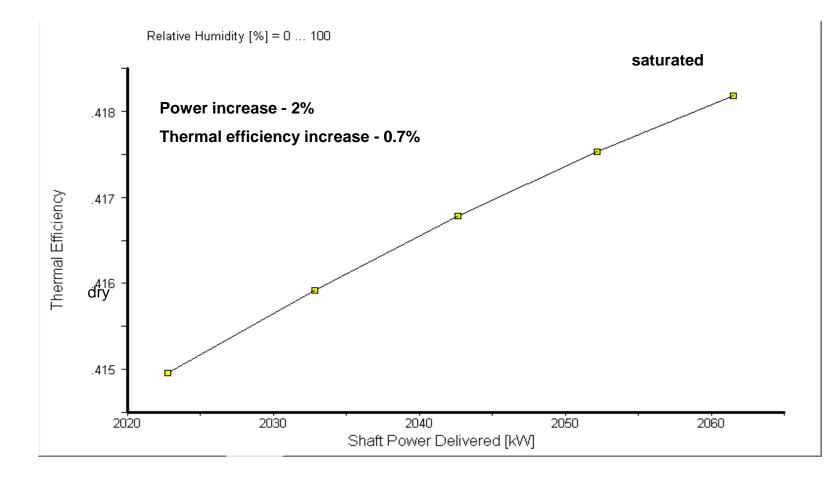
power boost-up to 20%

Thermal efficiency increase by 1.5-3%

Limited by saturation conditions in high pressure-risk of compressor blade damage.

Water injection methods (cont.)

3. <u>Water/Steam Spray Into Combustor</u>


Direct water injection boosts power up to 20% but decreases efficiency

If heated and vaporized by exhaust boiler the thermal efficiency increases too by 20%.

4. Inter Cooling by an Heat Exchanger

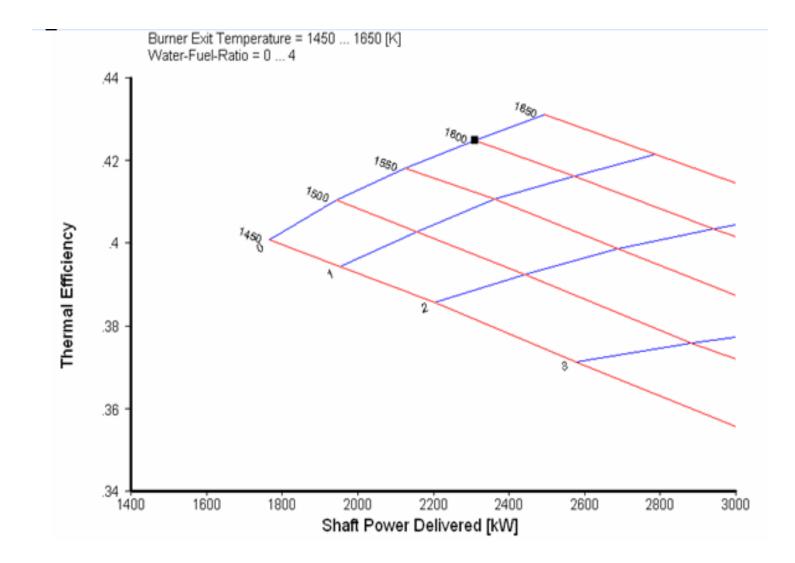


Fig.1. Engine inlet water injection performance Ambient conditions – 35°C

Fig.2 Water Injection into Combustor - Performance

CCHP Systems

1. Combined Cooling Heat and Power systems:

80% - total efficiency

35% - power

45% - heat and/or cooling

Used in Distributed Energy applications: 100 – 10,000 kW

2. <u>Cogeneration system</u>:

Utilizes exhaust heat to generate steam and additional power 60% total efficiency Used in large power stations-more than 100,000 KW

CCHP Systems Variable Energy Demands

1. Electrical load variable demands may be compensated by selling electricity back to the grid (assuming it exists) for an acceptable price.

2. Decreasing power for significant periods results in inefficient usage of the capital investment.

3. Heating/Cooling significant demand variations requires heat/cool storage facilities, as part load performance is not cost effective.

The Inter-Cooled Brayton Cycle - T4=1600 °K

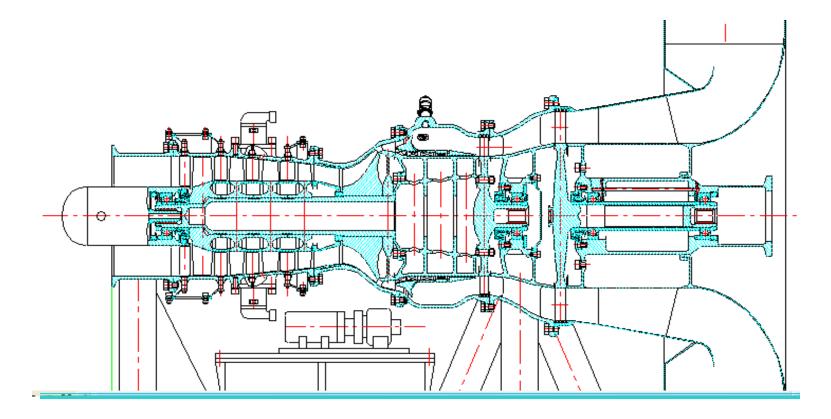
1. <u>Simple Cycle Performance</u>

C.P.R = 15

Specific Power-- 400 kW/kg/sec

Thermal Efficiency - 34%

2. Inter- Cooled Cycle


C.P.R = 15 Specific power - 496 kW/kg/sec Thermal efficiency - 32.5%

Conclusion:

20% power boost but thermal efficiency decrease of 1.5 points.

FIG.3 - OCN TS 600 Gas Turbine

10

Fig. 4- Simple cycle performance

Station W	т р	WRstd	PWSD =	603.1	 Power – 603 kW
amb	288.15 101.325		PSFC =	0.21301	
2 1.500	288.15 101.325	1.500	Therm Eff=	0.33992	Thermal Efficiency - 34%
24 1.500	500.71 543.102	0.369			
25 1.500	501.00 543.102	0.369	P2/P1 =	1.0000	
3 1.500	701.10 1531.548	0.155	P25/P24 =	1.0000	
31 1.500	701.10 1531.548		P3/P2 =	15.12	
4 1.536	1600.00 1194.607	0.310	WF =	0.03568	
41 1.536	1600.00 1194.607	0.310	Loading %=	100.00	
44 1.536	1274.24 392.194		s NOx =	0.45393	
45 1.536	1274.24 386.311	0.854	P45/P44 =	0.98500	
49 1.536	953.86 102.451		Incidence=	0.00	
5 1.536	953.86 102.451	2.787			
8 1.536	953.86 101.426	2.815	P7/P6 =	1.00000	
			P8/Pamb =	1.00100	
Efficiencies:	isentr polytr RNI	P/P	a8 =	0.17880	
Booster	0.8260 0.8611 1.000	5.360	TRQ [%] =	100.0	
Compressor	0.8200 0.8430 2.102	2.820	ZWBld =	0.00000	
Burner	0.9900	0.780	WBHD/W2 =	0.00000	
HP Turbine	0.9100 0.8988 0.676	3.046	WBld/W2 =	0.00000	
LP Turbine	0.9300 0.9186 0.318	3.771	eta t-s =	0.92348	
HP Spool mech	0.9950 Nominal Spd	0	WHcl/W25 =	0.00000	
LP Spool mech	0.9950 Nominal Spd	0	WLc1/W25 =	0.00000	
PT Spool	Nominal Spd	0			
	-				
Fuel	FHV humidity w	ar2			
Natural Gas	49.721 0.0 0.	0000			

11

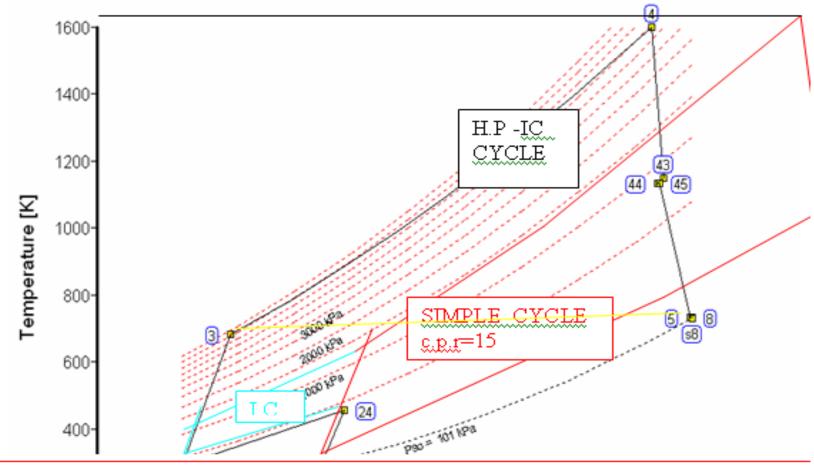
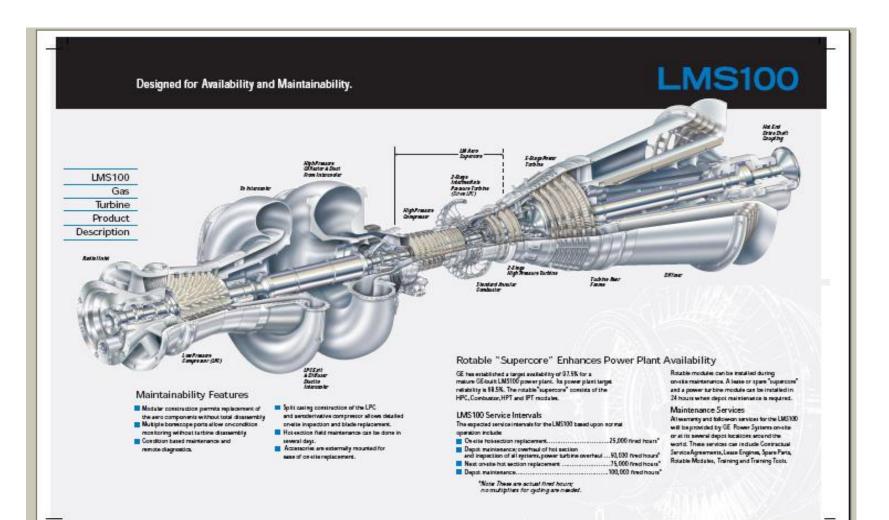


Fig.5 - Simple Inter-Cooled Cycle Performance

								7
	Station W		P	WRstd	PWSD	=	744.5	 Power – 744.5 kW
I	amb		.325		PSFC	=	0.22253	
I	2 1.500		.325	1.500	Therm Et	Ef=	0.32537	Efficiency – 32.5%
I	24 1.500	500.71 543		0.280				•
I	25 1.500	288.00 526	.809	0.288	P2/P1	=	1.0000	
I	3 1.500	408.55 1485	.601	0.122	P25/P24	=	0.9700	
I	31 1.500	408.55 1485	.601		P3/P2	=	14.66	
I	4 1.546	1600.00 1158	.769	0.322	WF	=	0.04602	
I	41 1.546	1600.00 1158	.769	0.322	Loading	8=	100.00	
I	44 1.546	1349.48 497	.510		s NOx	=	0.09956	
I	45 1.546	1349.48 490	.048	0.699	P45/P44	=	0.98500	
I	49 1.546	965.82 102	.451		Incidend	ce=	0.00	
I	5 1.546	965.82 102	.451	2.830				
I	8 1.546	965.82 101	.426	2.859	P7/P6	=	1.00000	
I					P8/Pamb	=	1.00100	
I	Efficiencies:	isentr polytr	RNI	P/P	A8	=	0.18188	
I	Booster	0.8260 0.8611	1.000	5.360	TRQ [%]	=	100.0	
I	Compressor	0.8200 0.8439	5.204	2.820	ZWBld	=	0.00000	
I	Burner	0.9900		0.780	WBHD/W2	=	0.00000	
I	HP Turbine	0.9100 0.9019	0.654	2.329	WBld/W2	=	0.00000	
I	LP Turbine	0.9300 0.9166	0.367	4.783	eta t-s	=	0.92461	
I	HP Spool mech	0.9950 Nomina	l Spd	0	WHcl/W25	5 =	0.00000	
I	LP Spool mech	0.9950 Nomina	l Spd	0	WLcl/W25	5 =	0.00000	
	PT Spool	Nomina	-	0				
	-		-					
	Fuel	FHV humi	dity v	war2				
	Natural Gas		-	.0000				12
1								14

Fig.6 - Thermodynamics of an Inter-Cooled Cycle



The Boosted Inter-Cooled Cycle G.E. – LMS 100

- 1. A compressor booster [4:1] delivers high pressure air into an intercooler and then flows into the same simple cycle gas turbine.
- 2. If cooled to ambient temperature: Mass flow increases 4 times
 Cycle pressure ratio increases to 80 = 4 x 20.
 Power increases 5 times.
 Thermal efficiency increases to 45%
- 3. A fin and plate large heat exchanger is used.

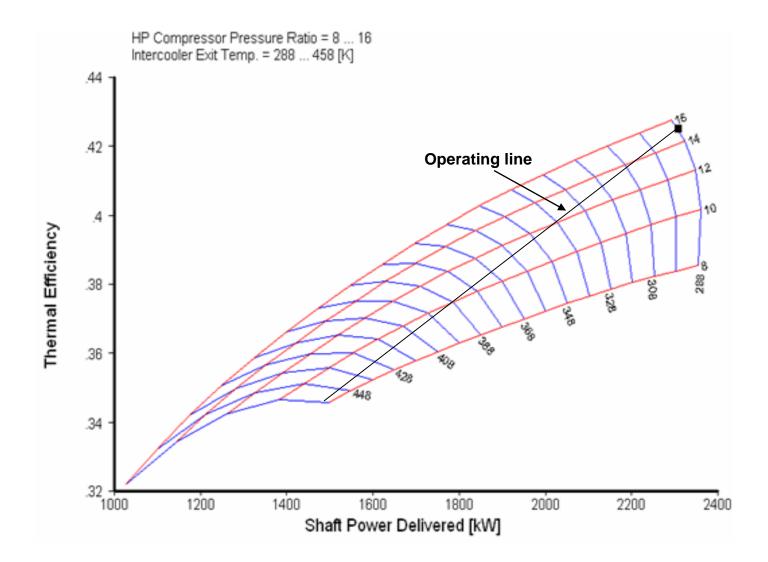
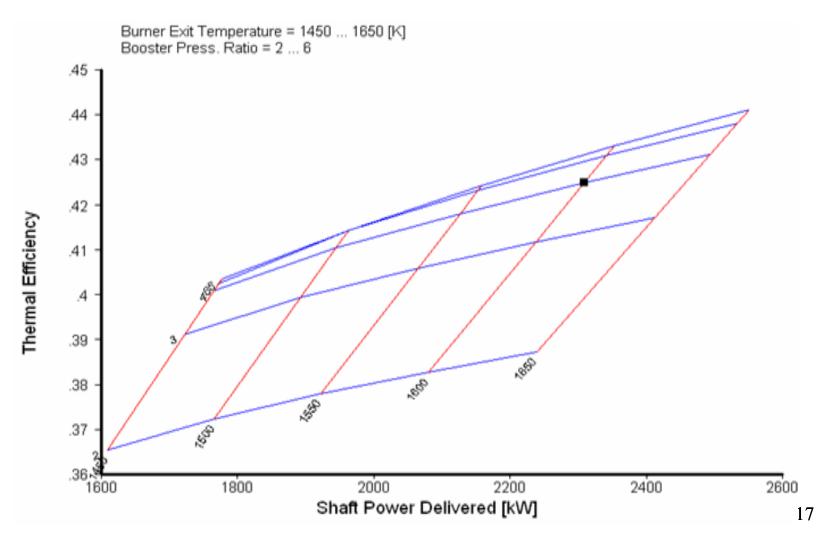


Fig. 7 - G.E LMS 100- Intercooled Gas Turbine


FIG.8 - Effect of Inter-Cooling On Performance

16

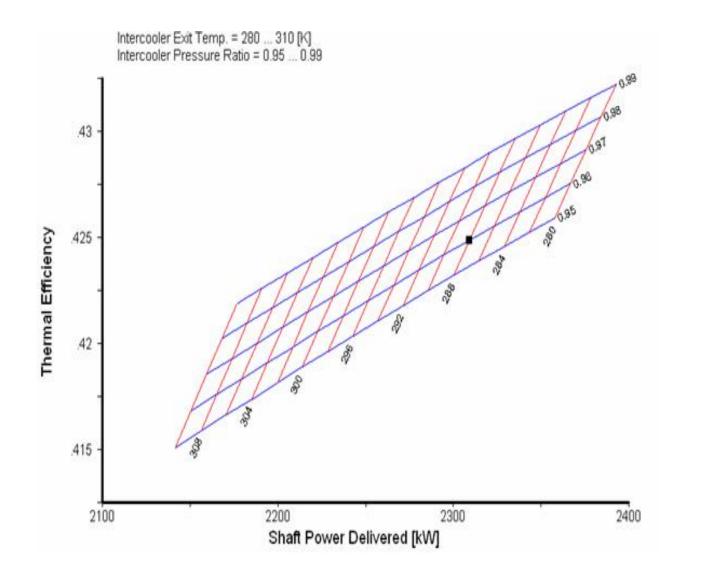
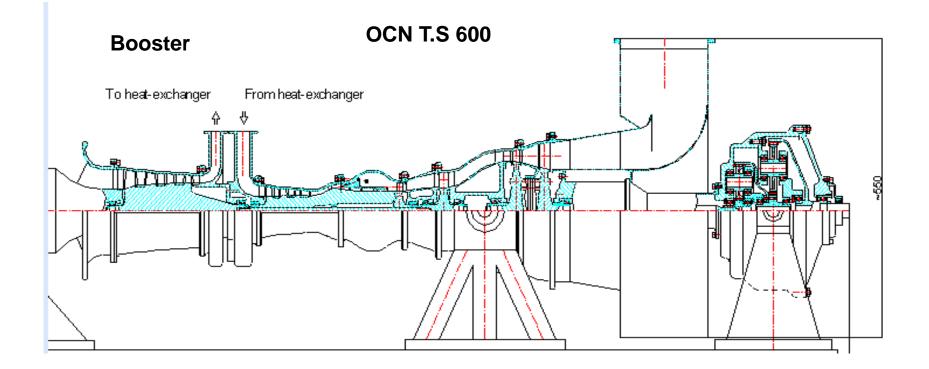


Fig.9 - Effect of Booster Pressure Ratio and Turbine Inlet Temperature On Performance

Fig.10 - Effect of Intercooler Parameters on Performance

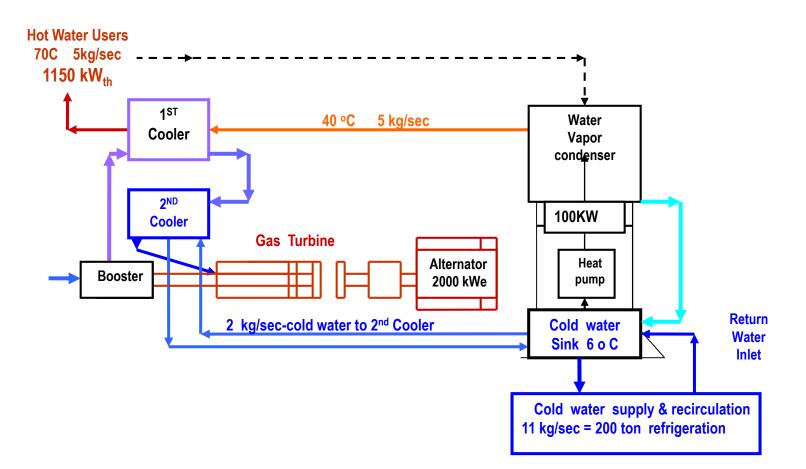

OCN TS 2000 Gas Turbine

- 1. Based on the OCN TS 600 Under Development (fig.3)
- 2. Boosted with a Booster of 4:1 P.R. Driven by an Additional Free Turbine.
- 3. Boosted Air Heated to 458 °K is Cooled in Air/Water Intercooler to 288-305 °K Depending on Water Inlet Temperature.
- 4. The Heat-Exchanger is a Direct Contact Technology with a Water Separator, Preventing water from entering compressor and low pressure drops.

Fig.11 - OCN TS 2000 Gas Turbine

Power - 2280 kWThermal Efficiency - 42.5%

Т


FIG.12 - OCN TS 2000 Gas Turbine Design Point Inter-Cooled

Performance		Power-2280kw						Thermal Efficiency-42.5%				
Station	W	T	P		WRstd	PWSI		=		←	Power – 2280 kW	
amb		288.1				PSFC		=	0.17042			
2		288.1			4.700	P2/F		=	1.00000			
24	4.700	455.5			1.175		P24		0.94080			
25	4.700	288.0			1.249	P3/E	2	=	56.44800			
3	4.700	700.7			0.130							
31		700.7				WP		=	0.10793			
4	4.667	1600.0			0.252	s NC		=				
41	4.667	1600.0	0 4461.	283	0.252						Thermal Efficiency	
42	4.667	1264.1	0 1419.	424			;v/w2		0.00000			
43	4.808	1249.1	9 1419.	424		WHel	/₩25	=	0.03000			
44	4.808	1249.1	9 1391.	036		P44/	P43	=	0.98000			
45	4.808	1249.1	9 1391.	036	0.735	WIN<	:1/W2	5=	0.00000			
46	4.808	1116.0	9 833.	060		WICl	./₩25	=	0.00000			
47	4.808	1116.0	9 833.	060		WLcl	/w25	=	0.00000			
48	4.808	1116.0	9 820.	564	1.178	P48/	P47	=	0.98500			
49	4.808	716.1				Inci	denc	e≡	0.00			
5			0 103.		7.490							
8	4.808	716.1			7.604	P8/B	amb	=	1.00500			
Efficie	ncies:	isentr	polytr	RNI	P/P							
Booste	r			1.000	4.000	WBHI)/W2	=	0.00000			
Compre	330r	0.7900	0.8511	1.734	15.000	WBld	l/W25	=	0.00000			
Burner		0.9950			0.780	Load	ling	8=	100.00			
HP Tur	bine	0.9150	0.9040	2.523	3.143		-					
IP Tur	bine	0.9400		2.523	1.670	WlkI	₽/₩2	5=	0.00000			
LP Tur		0.8950		0.840	7.937		t-s		0.88845			
	ol mech				0	TRQ		=	100.00			
	ol mech		Nominal	-	ŏ						21	

Fig. 13 - CCHP System - Summer Module

68% Total Efficiency

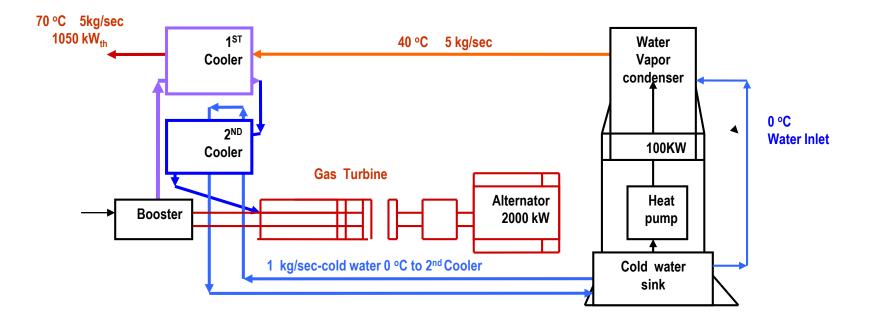


Fig. 14 - CHPC System - Winter Module

Output - 1900 kW Electrical + 1050 kW Heat Energy

Total Efficiency - 57%

