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Advantages of Hot wire Anemometry

|deal tool for Measurement of Perturbation Quantities in Time Domain
« High Frequency Response (~ 102 kHz) = Accurately follow transients
« Wide Velocity Range
« High Accuracy / High Signal to Noise Ratio
« Signal Analysis: Output is continuous analogue signal
=>» Both Time and Frequency Domain analysis is possible

Challenges of Hot-wire in Turbomachinery Flows:

« Transonic Multi-Dimensional Flow with Large Independent Fluctuating Components
— HW Data Reduction for Compressible Subsonic / Transonic Flow (0.4<M<1.2) problematic

« Flow phenomena generating instantaneous fluctuations of density, velocity, temperature and
angle is coupled but not necessarily correlated.

— Wire Voltage (V) = Function of Density (p), Velocity (V), Temperature (T,) and Angle (¢)
« High Speed = High Frequency Response Needed

— Thinner Wires, Higher Wire Temperature needed (Reliability issues)
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Development and Validation of X-Hotwire Methodology for Turbomachinery flows:

Experimental Technique Development Requirements:
« Practical : Absent of Closed Loop Wind Tunnels Varying Each Flow Quantity Independently

 Reliable / Repeatable = Precise & Accurate Results
« Applicable in Wide range of Flow Conditions (from Subsonic to Transonic)
« Intuitive: Based on Scientific Concepts, not Empirical Collapse of Data

=>» Limitations and Capabilities Well Known

Validation and Exemplary Implementation
« 2-D Fluctuation Measurements in Compressible Subsonic / Transonic Flow regimes

Downstream of a Gas Turbine Fan
* Instantaneous Mass Flow, Velocity, Density, Pressure are Measured
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Bridge Voltage is Sensitive to Variations in Velocity, but also:

a. Total Temperature

b.  Density [E = f(p,U, T, ¢)]

C. Flow angle
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« Parameterizing one parameter at a time while others remain constant
=» Impractical =>»Non-Physical (Purely Empirical) =»Not Reliable
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Dimensional Analysis of Thin Heated Wires:

Nu = f(Re, Pr,M, Gr, , i, @) 7:@77% n= f(Re, M, ¢)
0

d (n = Recovery factor)

High speed air flow for a given probe at constant overheating:

Pr, 1/d and T are constant and negligible natural convection (if Gr< Ré)

 Mu=fRe M. §)

U
Re:pUdW NuZde M=
H k YRT,
7 E 2
(h— q and q" =—= j
7) AR,
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The calibration setup schematic view:
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Measured Calculated Finally obtaimned
Iteration
Wire v ‘
voltages
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« Mass flux uncertainty is 1.8 % (95% confidence level)

* Flow angle uncertainty is 1.1 degrees (95% confidence level)
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2> A[S,/S,] with Ad,;.= Sum to 9 um up to 20 %

v Instantaneous Density AND Velocity Fluctuations can be Computed
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This is not CFD!!!!

Possible to Calculate:

m Mass flux =) Independent Fluctuation
m Angle of Each Component

m Velocity — +

m Density Blade to Blade Variation
m P, — of Each Component

Data Useful in:
m Time/Frequency Domain Analysis

= CFD Validation = Test-Aided Design
= Performance Characterization

s Length/Time Scale Identification

= Effects of Manufacturing Tolerance

= Noise Spectra
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For The First Time: Instantaneous Velocity & Density in Compressible Flows
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Demonstrated Novel High Speed Cross-Hotwire Operation Scheme:
» Practical

* Nondimensional Parameters (Re, Nu, Ma) and widely accepted
correlations are used

= No need for closed loop wind tunnels
= Effort equivalent to that of operation in isothermal low speed flows

» Accurate

» |nstantaneous mass flux and flow angle can be determined within 1.8% and
1.1° uncertainty (95% confidence level)

» Valid over a wide range of Reynolds and Mach numbers (Subsonic + Transonic)

= (Calibrations obtained in cold jet (e.g. T,=290K) are valid at measurement
environments (e.g. Gas turbine fan where T,=335K).

» Instantaneous density and velocity fluctuations can be independently computed

» Application is demonstrated by measurements conducted in gas turbine fan



11t Israeli Symposium on
Jet Engines and Gas

Turbines, October 2012 Associated Publication

Technion, Israel

Cukurel, B., Acarer, S., Arts T., “A Novel Perspective to High Speed Cross-Hotwire
Calibration Methodology”, Experiments in Fluids, Vol. 53, pp. 1073-1085, 2012.





