Turbo Charging Micro – Turbines

(Boosting 40 kW to 200 kW)

October 2012

Applications

- Power Generation CHP (Combined Heat and Power) for Decentralized Generation market
- Aerospace UAVs
- Turbo-Pumps/compressors for various applications

The Rational

Addition of Commercial Turbo-Charger to the basic TG-40 engine *quadruples* the output and reduces the installed cost by ~ 65-70% (from 1700 \$/kW to 500-550 \$/KW) Thus – the enhanced TG-200 is a potential competitor to IC (internal combustion) piston engines in the "Decentralized Generation" market, and other markets / Applications

Piston Engines Turbocharging

Turbocharger cycle:

- Serves mainly to boost air inlet pressure and mass flow;
- an intercooler is optionally placed between the compressor and engine inlet.

Automotive modern turbochargers attain high components efficiencies and use ball bearing technology lubricated by main engine oil system

Piston Engine Turbocharger

Duke Hallock, former high-performance coordinator and test-lab supervisor for AiResearch, has driven the same '37 Ford pickup since it was new. Ford 292 with AirResearch T-7 turbo is one of many engines he has installed in the chassis over the years. A plate perforated with 1/4-inch holes is used at original manifold flange to create turbulent flow for good mixture distribution.

"Turbo-Charging" Gas Turbines

A. None/Intercooled - recuperated Cycle

2 or 3 shaft gas turbine cycles - mainly used for aircraft engines.

An integral concentric design is required due to size weight/limits.

Not applicable to microturbines due to small shaft size.

2 Spool Turbo-Shaft

B2Tsht1.VVMF

GasTurb

B. Recuperated / Intercooled Cycles

Requires an "open" architecture in which the combustor and recuperator are accessible to minimize pressure losses.

Therefore-not used in aircraft engines but in large commercial gas turbines pre-designed for such architecture.

A. 2 Spool Intercooled Recuperated Gas Turbine

Small Recuperated Micro Turbines

May be turbocharged if combustor is accessible - If not - major modifications are required.

Capstone - 30-60kW - not accessible

Honda - 20-30 kW - not accessible

TG-40/200 - Accessible

Recuperators - Annular design

Honda Microturbine

Ref.: Koichi Shinmura Presentation at the IGTI Turbo Expo, June 18 2003, Atlanta, USA

Capstone Microturbine

Ref.: Capstone Product Datasheet

R-Jet TG 40 Turbo-Generator 40 KW

Recuperated R-Jet TG - 40 Axial Section

INTERNAL RECUPERATED GAS TURBINE- ADAPTATION OF TUEBOCHARGER

- 1. LARGER RECUPERATOR REQUIRESD NO AVAILABLE VOLUME WITHIN CASING
- 2. DUCTING TO AND FROM ANNULAR RECUPERATOR TO TURBOCHARGER A CHALLENGE

Scheme of TG-40 - Integration with Turbocharger

TG-200 kW Technical Concept

The TG-200 is a turbocharged version of the single shaft TG-40. It Includes the following –

- 1. The basic TG-40 intercooled and recuperated turbo-shaft driving a 200kW alternator.
- 2. Turbocharger driving a booster compressing air into the TG-40 original compressor inlet through a inter cooler.
- 3. 200kW power converting unit.—alternatively a speed reducer to 1500 rpm and a conventional generator.

The design point performance is:

Thermal power - 225kW

Thermal efficiency - 36%

TG-200 CHP Design.

TG-200 - Top View

TG 200 - Mechanical Assembly Design

Same foot-print as TG-40 ~0.6 Sqm

Frontal area- ~ 0.8 Sqm

Weight – 420 Kg (full CHP unit)

Optional featuresnatural gas booster solar adapter.

TG-200 kW with an automotive turbocharger Technical Concept

The TG-200 is a variant of the basic TG-40 gas turbine.

The turbocharger is – Garret model T5533R

Cycle pressure ratio-9.5

T.C compressor pressure ratio-3.5 eff.-75%

T.C turbine pressure ratio 2.19 eff.-80%

The thermal efficiency is-33%

The matching is shown in the following turbocharger map.

Turbocharger Matching with TG-40

TG-200 Cycle-new turbocharger-Load on Turbocharger Shaft

Cycle pressure ratio-9.5 Air flow-1.03 kg/sec

H.P.T inlet temperature-1275k Thermal efficiency-36.8%

T.C turbine pressure ratio-5.14 (2 stages)-eff.—86.5%

T.C compressor pressure ratio-3.5-- eff.-80%

Recuperator effectiveness-85%

Recuperator inlet temperature-830k

TG-200 Performance - 225kW on Gas Generator Shaft

Cycle pressure ratio- 8.47

Air flow-1.03 kg/sec

H.PT inlet temperature-1275k

Thermal efficiency-35%

T.C turbine pressure ratio-2.09, efficincy-86.5%

T.C compressor pressure ratio-3.6,efficiency-76%

Recuperator effectiveness-85%

Recuperator inlet temperature-853k

TG-200 - Modifications Program (of TG-40)

Assure mechanical strength of rotating and stationary components to higher internal pressures.

Increase recuperator width.

Increase power electronic unit to 200 kW.

Design new alternator coupling.

Design and build air/water inter cooler.

Design and modify the TG-40 control system.

TG-150

Turbocharged Aerospace Performance

TG-150 Aerospace Main Features

Dimensions (mm) length=1380 width=580 height=380

Weight- 145Kg (including 20Kg transmission weight)

Thermal power - 150kW; Net power-145kW

Power/Weight ratio - 1

Recuperator-compact - stainless steel plate and fin construction
Its effectiveness increases from 75% at SLS to > 90% at 10000m altitude., due to decrease of mass airflow and thermal load.

Performance	T.C. Loaded		T.G. Loaded	
	Power KW	Efficiency %	Power KW	Efficiency %
SLS	150	30.0	146	28.4
3000m-Mach=0.3	123	32.6	122	31.4
6000m-Mach=0.35	109	36.0	96	31.0
10000m-Mach=0.4	70	38.2	61.5	36.0

TG Aerospace 150kW

TG Aerospace 150kW - Top View

Summary

- Turbo-charging a commercial micro gas turbine is presented as a <u>cost effective</u> method to boost its power 4-5 times while keeping a high thermal efficiency.
- Using automotive turbochargers as add-on modules simplifies the system design and reduces cost.
- Thus- a green competitive solution is available in the 40-200kW power range.