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SIMULATION HAS MADE SIGNIFICANT IMPACT ON ENGINE DESIGN 

 1960 1970 1980 1990 2000 2010 2020  
3D  Euler + Boundary Layer 

3D RANS 

Multi-stage RANS 

Unsteady Multi-stage Euler, RANS 

Unsteady Multi-stage RANS 

HLES & Multi-discipline 

JT8D PW4000 GTF 

F100 F119 F135 

Wasp 

Image credits unless mentioned: Pratt & Whitney 



“75 percent of the manufacturing cost is committed by 

the end of conceptual phase of the design process”1 

1 D. Ullman, The Mechanical Design Process, McGraw-Hill, New York, 1992 
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HUGE OPPORTUNITY FOR SIMULATION TOOLS 
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ENGINEERING SIMULATIONS ARE INTEGRAL PART OF ENGINE DESIGN  

• CFD relatively mature for single component, 

on-design analysis. 

 

• Going forward, we need to model component 

interactions and off-design flow physics. 
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SUCCESSFUL COMPONENT SIMULATIONS DRIVE METRICS AND COST 

Legacy        V2500       PW6000      NGPF 
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DESIGN PROCESS HAS EVOLVED WITH COMPUTING CAPABILITY   

High fidelity large 

assemblies 

Increasing 

Multi-discipline 

Automation 

Aero 

Variation Structures 

Small-to-Mid Scale Design for Variation (DFV) 

DFV on High Fidelity Models 

Faster, Higher Fidelity Analysis 

High Fidelity 

Optimization 

Automation 

Statistical

Methods 

Component 

models 

Geometry 
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MULTI DISCIPLINARY DESIGN OPTIMIZATION IS KEY 
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Design System  

MODELING 

• Accuracy 

• Parametric models  

• Fidelity level vs run-time  

 

AUTOMATED WORKFLOW 

• Flexible 

• Robust 

• Easy to use 

• Numerous variables/outputs 

 

INFRASTRUCTURE 

• Distributed, parallel computing 

• Network reliability 

• Data storage and search 

 

CULTURE 

• Alignment  

• Up-front investment  
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MDO ENABLES GOOD DECISION MAKING EARLIER IN DESIGN CYCLE 

Y
 

X 
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Design Space Map 
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analyses/day 

Airfoil Optimization 
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PART LEVEL CHALLENGE- PREDICTION OF FILM COOLING FLOWS 
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Kohli and Bogard (1995)             

M=0.5, DR=1.6, L/D=4

Pedersen, Eckert, and Goldstein

(1977) M=0.52, DR=1.5, L/D=40

Schmidt, Sen, and Bogard (1994)        

M=0.6, DR=1.6, L/D=4

Sinha, Bogard, and Crawford (1991)

M=0.5, DR=1.6, L/D=1.75

Walters and Leylek (1996)                 

M=0.5, DR=1.6, L/D=4

Kohli and Thole (1997) 

Notional RANS 

Prediction 

Notional 

Data 

• RANS methods not capable of predicting film cooling effectiveness due to turbulence model limitations 

 

• LES shows promise but not practical for design cycle 

 

RANS vs. data 

© ASME, from ASME proceedings of 32nd National Heat 

Transfer Conference, Vol 12, pp. 223-232 

© 2009 by CERFACS, from VKI 

Lecture Series on LES 

Applications, page 25. 

LES example 
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SOME SUCCESS USING OPTIMIZATION -  TRENDWISE ACCURACY 

Baseline 

Optimized 
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• An optimization procedure using 

RANS used to change airfoil 

shape with film cooling. 

• Increase in adiabatic effectiveness 

with no impact on aerodynamic 

losses. 

• Increased local acceleration 

and convex curvature reduced 

blow-off and improved lateral 

spreading. 

• Test data showed similar 

trends as predictions but not 

absolute magnitudes.  

• Despite its limitations, RANS 

methodology can be useful! 

© ASME, from Kohli & Bogard, GT2006-90852 
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COMPONENT LEVEL CHALLENGE – PREDICTING INGESTION 

• Understanding gas path – rim cavity interactions critical for both compressors & turbines 

 

• Multi-row, ‘full-wheel’ time accurate simulations required to capture complex ingestion phenomena  

 

Complicated pressure field changes 

with time/position 

Complex interaction between 

gaspath/ingested/purge flow 

Full-wheel domain for 

analysis 

© ASME, from Wang et al., GT2012-68193 
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MULTI COMPONENT CHALLENGE – COMBUSTOR TURBINE INTERACTION 

• Different modeling fidelity used in individual components (LES in combustor vs. URANS in turbine) 

 

• Large differences in length/time scales of interest (cooling air vs. gas path) makes full turbine LES simulation prohibitive 

Stanford University, 2006 
LES RANS 



• More reliance on simulations, from cradle to grave – digital thread/twin 

• Need for both high and low fidelity modeling – machine learning 

• Continued focus on multi-disciplinary and design for variation 
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WHAT’S ON THE HORIZON? 


