

Our business units

Energy Management 5% / \$7.4 B

Oil & Gas 10% / \$15.2 B

Power & Water 19% / \$28.3 B

Healthcare 12% / \$18.3 B

Aviation 14% / \$20.0 B

Transportation 4% / \$5.6 B

Capital 31% / \$46.0 B

Home & Business Solutions 5% / \$8.0 B

~\$147.4 Billion Revenue in 2012

\$16.1 B Operating Earnings

"Longitude"... Author - Dava Sobel

- Engineering crisis of the 18th century.
- Longitude committee formed, prize defined by parliament.
- John Harrison by 1735 solves with an accurate ship-worthy clock.
- Not really in widespread use until roughly 1780 or later.
- Why?

Propulsion Challenge

Sources: Air Transport Association/Bureau of Transportation Statistics

Source: A4A Quarterly Cost Index, US Airlines

Regulatory Challenges

FAR Stage 5

•	CAEP/6	2008 / 2013
٠	CAEP/8	2014 / 2018
٠	EU Carbon Trading	2012
•	ICAO CO ₂ Standard	2016-2020

2020

Reduce commercial and military customer costs in an increasingly difficult environment

Energy Availability

For Every Unit of Fuel Chemical Energy...

Today's Turbofan Is roughly 40% efficient

Energy Availability

converted into transfer efficiencies...

60% loss can be categorized as:

Thermal eff: Thermodynamic loss due to the Brayton Cycle

Transfer efficiency: Loss converting energy from the core to the bypass

Propulsive efficiency: Loss of converting fan and core exhaust into useable thrust

Opportunities for the future...

$$Range = \left(\frac{V_0}{SFC}\right) * \left(\frac{L}{D}\right) * \ln \left(\frac{W_{initial}}{W_{final}}\right)$$

$$= (FHV * \eta_{thermal}) * \eta_{transfer} * \eta_{propulsive}) * (\frac{L}{D}) * \ln \left(1 + \frac{W_{fuel}}{W_{payload} + W_{empty}}\right)$$

- Highly Loaded Compressors
- High OPR Low Emissions Combustors
- Adaptive cycles
- Constant Volume
 Combustion
- Hybrid Electric Propulsion

- Low Loss Inlets
- Variable Low Loss Exhausts
- Distributed Power Transmission

- Very High BPR Turbofans
- Ultra High BPR Turbofans
- Open Rotors
- Distributed Propulsion
- Wake Ingestion

- Novel Alloys
- Non-metallics
- Advanced Engine Architectures

Thermal Efficiency

Large Thermal Opportunity Beyond Conventional Brayton Cycle

PDE Technology

- unsteady shock wave + combustion zone
- pressure rise combustion
- more efficient conversion of energy in fuel

Propulsive Efficiency

Drive to lower SFC's and more integrated engine / aircraft designs

Open rotor tests with NASA

GE/NASA testing began in 2009

Test builds on 1985 demonstration

Acoustics validation

Aero model validation

New blade concepts

Installation effects

Pitch change effects

Pylon, sidewall interaction

GE Aviation

Driving productivity through analytics

Fuel & carbon

- Flight operations data analysis
- Operations insights for fuel savings

Improving **productivity** of assets

1% fuel burn reduction^{-a)} = \$10MM savings

IVHM

Integrated Vehicle Health Management

 Advanced prognostics & enterprise integration

Improving **utilization** of airplanes

1 hour increase in aircraft utilization per day = \$100MM+ annual benefit^{-c)}

Digital workscope

Optimize time on-wing

Improving **service** of our engines

5% annual productivity = \$50MM cost savings per year

Over **25,000**^{-b)} engines monitored ... and growing

- Fuel efficiency
- Asset utilization
- Operations efficiency

(a- Assumes a typical 70 aircraft, \$1B fuel bill, fuel cost is \$3.25 per gallon (b- Includes CFM, GE & EA engines (c- Assumes fleet > 50 aircraft

Global challenges

Temperature, dust, pollution, gravel, sand, construction debris

Technology integration thru 2020

Keeping the pipeline filled

Technology

Composites

Lean Combustion

High-Temp Materials

Flight Mgmt

2010

Advanced turbofan

Integrated engine and aircraft systems

Adaptive cycles

Advanced architectures 2020

Architecture

Integrated propulsion

Integrated power generation

Core efficiency

New designs

Technology demonstrator programs

Adaptive Engine Technology Development

 AETD...new class of engines with up to 25% better fuel efficiency

- Variable cycle technology
- Technology demonstration that builds on ADVENT

 Foundation for future generation of combat propulsion

GEnx build-up, acceptance & flight test...

New Product Introduction (NPI)

Taking our products from design to manufacturing

Make parts

Run Development Tests

Certify

Test types

- Performance
- Ingestion –
 water, hail, ice,
 dust, birds
- Acoustic

- Fan blade-out
- Emissions
- Vibration
- Endurance
- Flight

New Product Introduction (NPI)

Lean labs

Turbine Airfoils

Rotating Parts

Composites

Special Products

Structures

Automation

Castings

Additive Manuf.

Explore, develop and industrialize Advanced Manufacturing Technologies and transition to Supply Chain.

Process development

Demo production

Industrialization for cost, quality & delivery

Full scale production

New military and commercial pipeline...

- F414 Gripen
- F414 INS6
- CT7, T700 derivatives
- LEAP
- GE9X
- GE38

Aviation Alternative Fuels...

Drop in

Near Drop-in

Non Drop-in

The Cost Of Fuel...

Wholesale price per Jet-A gallon equivalent \$

Summary

Traditional fuel burn reduction strategies are beginning to yield diminishing returns – innovative technologies are required

- Light weight, high propulsive efficiency
- Advanced materials
- Highly integrated
- Big data, prognostics, IVHM
- Non-Brayton cycles

New products are the lifeblood of the business

- Roadmaps near term to 2050+
- Maintenance concept selection can have multi billion dollar impact to the bottom line.

Aviation alternative fuels may play a significant role in our energy future

