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The key message

« A reliable estimate of the achievable performance map of successful
stages can be generated using non-dimensional information of the duty,
with minimum information of the geometry.
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How is this possible?

« The predicted map shows what should be achieved for a stage designed
with these non-dimensional parameters — it does not apply to poor
designs - which may have poor maps!

« Most stages are optimised with similar design rules so that good stages
designed by different people have closely similar maps
— Inlet optimised for minimum relative Mach number at the tip M,
— Limit to diffusion in shroud streamline: De Haller number W,/W, ~ 0.6
— Blade number selected on the basis of common loading criteria
— Compromise between range and pressure rise give similar backsweep levels

— Diffuser and impeller usually adapted for low incidence and good matching
with throat areas selected for maximum flow requirements

* The method relies on the estimated efficiency and work at design and
scales all other points from this.

« The method distinguishes between different types of stage.
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Four different stage tvpes

«  Two types of impeller
— Process compressor impeller
« Radial inlet
» Leading edge in inlet bend
» Short shrouded impeller
« Usually without splitter vanes
— Inducer style impeller
» Axial inlet
» Long open impeller
» Usually with splitter vanes
«  Two types of diffuser

— Vaneless diffusers T @.ﬂpu;
— Vaned diffusers Diffuser: Vaned Vaneless

Impeller: Process Inducer

« Different coefficients are selected for the four different types of stages
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Contents

* Introduction
- Key parameters and equations
* The anatomy of a performance map
— Anatomy of the work coefficient
« Model for work coefficient
— Anatomy of the efficiency
« Model for efficiency variation

« Matching of a vaned diffuser and its effect on the map
*  Summary
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Key equations and parameters

 The method requires values of the key non-dimensional parameters of
the stage at the peak efficiency point at its design speed:

— Flow coefficient ~ Work coefficient Efficiency Tip-speed Mach number

V Ah u u
0y = Ay =—5 My My=—2=—=

u,D; us 8 RTy

* The method generates stage characteristics for the individual stages
with no further detailed information about the geometry, other than the
Impeller diameter and backsweep

P An=1(M,..)

* These can be used with thermodynamic equations to predict the
pressure ratio, and volume flow over a range of speeds

7=+ =DMV V =¢Dju, = ¢D;a,M

(«-»P C A

ENGINEERS November 2014 / 6

8 University of Stuttgart




Design of equations for model of stage characteristics

« Physical arguments have been used to select the most appropriate
form of equations relating the non-dimensional performance variables

— Equations were chosen so that geometry is not needed
— Suitability of equations tested by comparison with test data

« Equations required
— Efficiency
» Variation of efficiency with flow along each speed line
« Change in peak efficiency with speed
» Flow coefficient at choke as a function of speed
» Flow coefficient at peak efficiency as a function of speed
— Work coefficient
« Change in work coefficient with flow and speed

— Surge line
* Flow coefficient at surge at different speeds
«"’» R GC{; EIEAR‘S November 2014 / 7 University of Stuttgart




The aero-thermodynamic model

- Efficiency characteristics = f(¢4,M, ¢,,4,,7,,M,, AB,C,D,..)
— Dependent variables
 polytropic efficiency and work coefficient 1, A
— Independent variables
 flow coefficient and tip-speed Mach number ¢, M
— Non-dimensional parameters at design point

 Selected by the user ¢d , /1d s My s Md
— Variable coefficients and fixed constants
« Selected to match historical test data AB,C,D,...

« Work characteristics
— Derived from the 1D Euler equation (see later)

f .
A= f(¢tl,|\/|u2):£1_|_£j 1— G, n 2 Dzkt)an,Bz
' k & [1+(7/_1)7/impﬂ’MuzZ]Kp_l 7 y,

University of Stuttgart
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Anatomy of a performance map

5
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Conversion of map to stage characteristic curves

A

*  Work coefficient, polytropic efficiency
and pressure coefficient versus inlet
flow coefficient

— Parameter of the speed-lines
* Tip-speed Mach number

Ay, =1(d, M) M,

- Effect of tip-speed Mach number
» Density variation across impeller
» Choking at impeller or diffuser inlet

- New approach is based on 4 and 77,
as

W, =An, Vo
— Euler equation is available for work
— Efficiency equations for losses
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Anatomy of work input characteristic

« Work input coefficient versus inlet flow coefficient
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Model of work transfer based on Euler equation

*  Work input coefficient versus impeller outlet flow coefficient
— Euler equation for work done on gas

Ao =215 4 tan g

Euler
2 u2

 Modification for disc friction work‘CUZ, —

A= 1+£ A

t1

k ~0.004

Euler !

« Relationship between inlet and outlet flow coefficients
: 2
m= ﬁbz D, p,U,0, = D; pyU,4,

1D
¢ ¢t1 —2 ptl /02 [1+ %mpﬂ“l\/I uZZ Menp ~1
U, T b, p, Pu
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Shape of work coefficient characteristic

) [ kjl_c &, D, tan 3,

A= f(¢t1’M

=1+— -

A ¢t1 \ [l+ 7/|mpﬂ“|\/I uzzw bZﬂ-

low M,

1.0 ~

« Five main effects
a) Back-sweep
b) Slip factor
c) Disc friction

d) Density change between
inlet and outlet of impeller

e) Choking in impeller inlet

0.5

0.0
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Validation of work eguation

k c ¢ D, tan g
_ _ s t1 2 2
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Anatomy of efficiency characteristic

* Non dimensional efficiency versus flow coefficient

* Increase of tip-speed Mach number M,

— Causes peak efficiency 085
to increase then to n

084 —+-04

decrease || —e-0ss

— Causes a shift in the 075 ;?ES
location of peak -~
efficiency to higher R B
flow coefficients 05 |

— Causes characteristics
to change shape and

06 1

become narrower 055 |
— Causes choke to move
closer to peak efficiency o 002 004 006 008 0/ 012 0.14
¢
By
s> C A o
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Anatomy of efficiency variation

* Normalisation of efficiency versus flow characteristic shows 3 effects

a) change in shape
n 1 M peak = f(Muz) 7 1 i

= 1

1 ¢peak

(b) change in peak efficiency (c) flow shift at peak efficiency
n peak | ¢peak I

Upeako ¢peak0

” M u2 . M uz2
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Flow coefficient versus Mach number envelope
for a turbocharger stage with a vaneless diffuser

— Flow shift at choke ? e O]
. [ ‘.\-’.,
¢C/¢p0:f(|\/|)/¢/po n l\\é..

' Eh'l.u A — =choke
1.5 e
. .. .~l ee e Opt
— Flow shift at peak efficiency et~
°8-;§95b a0 na. Su_pess
S e SN kg, P
By /6= (M)
P P 1 beecceceeed?® ASIRERERERENTA L Pl Lh ik -==su_opt
: = phi_c/phi_p0
— Flow shift at surge . o
[¢,=f(M) g el
¢S po /ﬁ ;"" ! ¢ ph|_5/ph|_p0

* Pessimistic
* Realistic / """" .
 Optimistic 0

0 0.5 M 1 1.5 2
« Validation data for 15 different turbochargers with vaneless diffusers
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Model for flow coefficient at choke ﬂ: f(M,,)

¢
« Range decreases with speed but is constant at both C
high (HI) and low (LO) speeds, for example for vaneless stages

¢ ¢ 1 T
D o—o5 |2 —092 |2 (B /4.) —
[¢c jLO (¢c jH| 08 gﬁ‘fié%ﬁw

« Test data shows an s-shape o
between the two asymptotes ~ °7

- Equation selected to model this 06 ng
0 o) T == turbocharger-vaneless
0.5 1 _
LO HI

- © (¢p /¢C)LO O testdata
@,

OoQ

04 : : ! ! !
0.4 0.6 0.8 1 1.2 14 1.6 M1.8 2

C

P= 1_t , t=(M,-B)(AM,+C), P=05att=0and M,=B
1+e
— The blending function P is known as the logistic function
(«-»P C A
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Model for variation of efficiency at low flow ¢ < ¢,

« Equations for flows below peak efficiency

— Similar to the equation for an ellipse

— Exponent varies to give different shapes
- D =2 would give an elliptical equation

« Typically D, =2.1and D, = 1.7

1/2

i,
1
0.9 %%?gﬁw y
08 Vy}-{{ﬁﬂ; A
' i | o 05 LS
0.7 g‘f’?ﬂ —~-0.8 IR R
0.6 ,A"A f/;jii;{ -1 : ? 1 % \X A \?}
' d | A A
Wi 11 TR
0.5 T & AR
i/ [ —-1.2 % YA
0.3 14 1.4 IR
0.2 {4 —-15 L
1. T
LY

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8

9,

— S-shaped blending function P, as given before

b<@, -
n,
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Model for variation of efficiency at high flow ¢ > ¢,

»  Equations for flows above peak efficiency "7

0.9 s T . .
— Exponent varies to modify shape of curves iy Vyf,/;ﬁ TAT
- H =2 would give an elliptical equation o7 j;/;f o ﬂ‘ {*ﬁm
: e Il ihate
« H > 2 gives a more flat-topped curve 22 Tl >y DRI
. . : A o X . Ly R
typical of transonic stages oa LA Dy % Y
e - Lt
° HLO 2 and HHI - 3 5 0.3 2 14 ‘, Ve
- 0.2 15 i
— Efficiency ratio adjusted so that efficiency 16 S
ratio at choke is not zero but given by 1-G = o+ A
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8

— Blending function P as given before
- —1/H

G=G,,[1-P)+G,P
¢>¢p1 i:(:I.—C;)—|—C; 1— M LO( ) HI
T —ﬁ H=H ,1-P)+H,P
i \ ¢c ) |
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Calibration of shape parameters A, B, C, D, E,F, GandH

« Tests on over 30
vaned diffuser
stages used
for selecting
coefficients

 Additional cases
used to validate
the approach

 The case shown
was not used to
establish the
coefficients
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Effect of matching of a vaned diffuser

« A change in diffuser throat area
causes a large change in the map

— In this case the impeller and flow
channel are unChanged I small diffuser throat area |

large diffuser throat area
* This is a common procedure to
adapt compressors to different
requirements
« The smaller diffuser throat leads to
— a higher pressure ratio at high speeds
— higher efficiency at higher speeds
— a slightly lower flow at a given speed
— less steep speed lines at high speed

« Surely we need a geometry
parameter to model this effect? No!
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Derivation of a 1D matching equation

» 1D equations for maximum flow per unit area (Dixon and Hall, 7th ed.)

— Impeller

— Diffuser

m

« Dimensionless form

— Impeller

— Diffuser

((«. PCA
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(r+1).
2 |20-D
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r+1
' Ah
- i 2 A= 2t M. =
u,b; U,
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1 A 1+(y-D)AM L|22 20D 2 |2(r-D)
My, D22 ] 1 y+1

November 2014 / 23

University of Stuttgart



Optimum matching

*  We assume that the impeller and diffuser are well matched when
both choke the same inlet flow coefficient as this gives the widest
range possible.

* (y+1)
A" @2 -1o,/D) MZ R
- (n+1)

b = Pu A [1—|— (y —1)AM uzz]m

* For given values of M ,, », D,/D,, n and A we can calculate the
required area of the diffuser throat relative to that of the impeller
throat A4 /A, for optimum matching.

- Alternatively, for a given area ratio A, /A, y, D,/D,, n and A we can
calculate the tip speed Mach number M, that would correspond to
optimum matching of impeller and diffuser, which would normally be
the design value.

(«-»P C A

ENGINEERLS November 2014 / 24 UniverSity of Stuttgart




Variation of the ratio of diffuser to impeller throat area

1 (7+1)
L+ @/ 2)(r-1)(D,/D,)*M2, oo
«  The diffuser requires a A A 2 h(””)
+(y -1)AM, [p(n1
smaller throat area as the [ =1
tip-speed Mach number 1 x=17=14, 2207, n=15 (n=0857)
Increases 0 ~ [—Dp,p,=05
_ | | ol ™ e - ____D/D by
* Lowerimpeller inlet diameter .| N . |---DD,=03
D,/D, also reduces the 0'7
diffuser throat area gl o
. Stages Wlth a hlgh Work *(._0'6_ .............................. ........................... \\ ...................... ............................. 4
Coeff|C|ent (leSS back sweep) ; OB ............................. ........ N .\; ................. ............................ 4
require a smaller diffuser 041 | : N
o D|ffusers 'I:O”OWIng an 03_ ............................. ............................... \\\‘\h_
impeller with a higher 0.2} S 3
efﬁciency also require a 04b _____________________________ ______________________________ i
smaller diffuser. 0 |
0 0.5 1 1.5 2
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Validation with design data from many sources o
A"+ -1(0,/D)’MZ ko

« X-axis is the actual design throat A [1+(7/—1)/1M jz_z(Fn+—11))
area ratio of each stage 10
« Y-axis is the area ratio predicted 44
at the design Mach number _ os
- Design data covers *_': 0.7
— Pressure ratio: 1.2to 12 5‘: 0.6 O
— Different impeller styles *
(open, shrouded, splitters) L 03
— Different diffuser styles 0.4 O Allstages
(wedge, aerofoll, circular arc) 0.3 Diaganal
— Different design philosophies 0.2
e Sources of data in given in 0.1
the acknowledgements of 0.1 0.2 03 04 05 06 0.7 08 09 1.0
Rusch and Casey (2014) Design (Ag*/Ai") [-]
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New understanding from the matching eguation

« There is no such thing as a mismatched diffuser!
— It will always become matched at a different tip-speed.

- The 1D matching equation estimates the required relative throat

areas A /A . 1(r+D)
A @2 -)(D,/D,)*ME, o

* (n+1)
A 1+ (7 -9 AME, o

— The design tip-speed Mach number M,;, 4 can replace the relative
throat areas A /A, as a geometry parameter in the equations
- Ifthe throat area ratio A /A, is subsequently changed then the
diffuser and the impeller become optimally matched at a different
speed, so we have a new design tip-speed Mach number, M, 4

AS_RL+@(-1(D,/D) MG oy Muzid:f[Ad*)

* (n+1) *
A [1+ (y —D)AM UZZ |2(n—1) A
) I) C A St . .
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Summary of matching effects with vaned diffusers

« Matching effects can be explained with the machine Mach number at
which both components choke simultaneously, M

@ Nominaldesign pointat M,

AT

design

Dif'fi.lser
chokes

««- PCA
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Effect of diffuser matching on the peak efficiency

Y|
— = f(MUZ’MUZd)

]7p0 1.15

« The variation of the peak efficiency
with speed depends on matching:

— Efficiency is best close to the
nominal design Mach number
which has the best matching

— Efficiency is poor at very low
speeds due to poor matching
as the diffuser is too small

— Efficiency decreases at higher
Mach numbers due to high-speed o.s
losses and poor matching with
a diffuser that is too large

1.1

Efficiency shift 7,/7,,
5
[V, ]

=

0.5 1 1.5 2
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Effect of diffuser matching on flow shift at peak efficiency

¢t1 p
¢t1 p0

* The variation of the flow coefficient
at peak efficiency with speed also
depends on matching:

— If the diffuser has a small diffuser

to impeller throat area ratio it is
matched at a high M,,,4 value L, &

— The diffuser then acts as a choked o 155 — 155 N

:f(MUZ’MUZd) 2.2

Flow shift ¢./¢,,

165 ==-=165

nozzle at low speeds and causes 1 LT

a very large reduction in the flow

coefficient at low speed ) 12 14 16 18 2
Tip speed Mach number M,

((«. PCA
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Prediction of a map for a stage with a small diffuser

1.1 1.20
*
1.0 1.15
< L
£0.9 A
A 1.10
E - N A
2 08 &E
= U g ,
s < 1.05 M.,
v =
IE 0.7 o) Test
A 2 m 0.689
s £ 1.00 -
5: = * 0835
0.6 : 8 A 098
E o095 e 1126
- (=
0.5 v (/ = | 1.235
: e 1.307
0.4 080 1 A 138
%/ o 1.452
03 / 0.85 1 ® 1.525 —;
\ m 1589 —1.589 NS
O Design data e peak eta -,
0.2 0.80 ; : -
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.20 0.40 0.60 0.80 1.00 1.20
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Prediction of a map of same stage with a large diffuser
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Application in preliminary design and procurement (1)

- How difficult will it be to achieve the technical objectives?

« Calculation with a vaned diffuser using the mean coefficients and
a realistic surge line Pressureratio map

- Design point @ T

— Information at this point g, [rr bt A AN
defines the whole map CT

 Other required operating 3.
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Application in preliminary design and procurement (2)

*  We need to change the objectives or increase the range (Map Width
Enhancement with inlet recirculation or a vaneless diffuser?)

« Calculation using a Pressure ratio map
vaneless diffuserand T
standard coefficients LA AR R AnR R

3.50 - A =\

« Design point @ SESAEEEENNNESNEERENNRY ST RN RN SRN Y

— Information at this point RRRRE
defines the whole map  Frorrbrb b A7 n

« Other required operating > [,
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Summary of the new approach

 The method provides a simple, rapid and reliable way of estimating the
achievable performance maps of well-designed centrifugal
compressors at an early stage in the design process.

* The user specifies a few key non-dimensional parameters related to
the compressor aerodynamic duty and from this single point an
achievable performance map over the whole speed range is estimated.

* Only minimum information of the geometry of the stage is required.

* The method makes use of simple models for the stage characteristics
that give the variation of efficiency and of work as a function of flow for
varying tip-speed Mach numbers away from the specified design point.

* |t also makes use of many empirical coefficients that are different for
different types of stages but have been adjusted to match the
measured performance of a wide range of successful stages.

* Itis an extremely useful tool, especially in the preliminary design and
procurement phases of a new design.
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