A Conceptual Performance Study on Integration of a Continuously Variable Speed Fan into a Micro Turbojet

Asst. Prof. Beni Cukurel Kobi Kadosh, Michael Palman

Turbo and Jet Engine Laborattory Faculty of Aerospace Engineering Technion – Israel Institute of Technology

Motivation

• Operational envelopes of UAVs expand into transonic speed range

Lockheed Morphing UAV Concept

- Engine design process requires compromises in
 - □ Thrust □ Weight □ Fuel consumption

Development budget
 Manufacturing cost

- Compromises are especially noticeable in microjet engine market, suffering
 - Restrained design costs
 - Low component efficiencies

Motivation

- Engine requirements for multiple operating points:
 - □ Low speed loitering □ High speed cruise flight
 - Impose conflicting design criteria
- Micro-turbojet engines:
 - Simple design
 - High levels of thrust
 - Poor fuel consumption hindering range
- Conventional turbofan engines:
 - Greater propulsive efficiency
 - Augmented levels of thrust
 - Not suitable for high speed flight

Goal

Variable cycle GT engine development which operates via integration of continuously variable speed fan into an existing micro-turbojet

Continuously Variable Transmission

Continuously Variable Transmission

- > Non-discretely varies the transmission ratio between 2 boundaries.
- > Can effectively achieve an infinite number of gear ratios.

In Our Research

> Exploring the use of a CVT in turbomachinery applications

<u>CVT Types</u>

➤ Magnetic CVT

(similar to asynchronous generators)

➤ Toroidal CVT

Continuously variable planetary

CVT Turbofan Conversion Advantages

• Variable Bypass Ratio Cycle

□ Enhanced performance (thrust) □ Higher efficiency

• Independent Fan – Engine Core Operating Lines

Minimal changes to core stream

□ Reduced development time and manufacturing cost

Turbojet Simulation

<u>Code Validation - Turbojet</u>

> Operating line (Alt.=0m, Mach=0)

m_{cor}

Corr DDM	Thrust [N]			Fuel Flow [kg/s]		
	Gasturb	Our Code	% Error	Gasturb	Our Code	% Error
108,500	220	216	1.8	0.00862	0.008294	3.8
97,650	160	155	3.1	0.00659	0.006295	4.5
86,800	110	108	1.8	0.00532	0.005032	5.5

Code Validation - Fixed Gear Turbofan

m_{cor}

Corr. RPM	Thrust [N]			Fuel Flow [kg/s]		
	Gasturb	Our Code	% Error	Gasturb	Our Code	% Error
108,500	368	380	3.3	0.00989	0.01031	4.3
97,650	284	291	2.5	0.00788	0.00806	2.3
86,800	198	206	4.0	0.00617	0.00637	3.2

CVT Geared Turbofan

Discrete gears + Interpolation ---->CVT model

Gear Ratio Effect

>>

✓ CVT only beneficial for Transonic Ma?

 \checkmark Spreading Motion \rightarrow Need to further decouple the fan operation from the core

Variable Bypass Nozzle

Control mass flow through bypass without affecting core stream

1 - Fan

- 2 CVT gearbox
- 3 Variable bypass nozzle

Effect on Bypass and Core

✓ Shift mechanism of fan operating line without effect on core performance

Variable Bypass Nozzle

Control mass flow through bypass without affecting core stream

1 - Fan

- 2 CVT gearbox
- 3 Variable bypass nozzle

Effect on Bypass and Core

 $\checkmark\,$ Shift mechanism of fan operating line without effect on core performance

Concept

Var. Bypass (Fanning)

Operating Line Anywhere on Fan Map

Investigation

- Select flight condition
- Select a large band of gear ratios, nozzle positions, and core RPMs
- Examine Thrust vs. Fuel at each combination
- Select gear, nozzle position, RPM with least Fuel per Thrust

Mach = 0.5, Altitude = 3000 m

m_{cor}

- $\checkmark\,$ Always operating on the most efficient point on the fan map
- ✓ No operability issues (running out of the map)

PR

✓ Easy to scale and integrate existing fan designs

CVT Turbofan with Variable Nozzle 0.72 0.71 Compressor 10000 0.73 PR 37026 7000 66000 55000 1780 44000 m_{cor} m_{cor} 1500 η PR Turbine 200 Turbine 3250 3500 3750 PR 35002503000 2750 3750 2500 2250 2000 1500

Efficiency of Various Configurations

For Typical Subsonic Flight Conditions

Fan: • Stability Issues • Under matching, thrust increase ~35 % • Fuel consumption increase ~30%
Variable bypass: • Good operability → thrust increase ~20% • Poor fuel consumption persists
CVT with variable bypass: • Reduction in fuel consumption ~20%
✓ Enables operation at Transonic and Supersonic Flight (not modeled here)

Conclusions and Future Work

Thermodynamic analysis of Variable cycle micro-GT engine development

Integration of continuously variable speed fan and variable bypass nozzle :

Enhanced Thrust
 I Higher Efficiency
 Augmented Operability

Implications

- > Cost effective engine that can perform multiple roles.
- > Make use of readily available turbojet platform
- Longer range/More payload

Future Work

- >Thrust versus weight considerations
- Simulation of Operation at Transonic Flight Conditions
- >Modeling of larger engines
- Complete Flight Mission Modeling
- ➤Laboratory experimentation

Thank you for your time!