Alternative Fuels for Gas Turbine and Jet Engines

Professor Yeshayahou Levy Dr. Vladimir Erenburg, Dr. Valery Sherbaum, Dr. Vitaly Ovcharenko, Eng. Alexander Royzman, Bat-Chen Avraham Turbo & Jet Engine Laboratory Faculty of Aerospace Engineering, Technion, Haifa

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Alternative Fuels for Gas Turbine and Jet Engines: Overall Context

ENERGY

- Finite resources & Rising fuel cost
- Dependence & Security of supply

Need for Alternative Fuels

ENVIRONMENT (Global Warming)

 Aviation accounts for 1.6 % of global greenhouse gas emissions and is forecasted to contribute to 2.5% of CO2 emissions in 2050

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

CO2 Emissions from Commercial Airlines Global Fuel Burn (Economic Model)

This model comprises the benefits of all measures considered.

© 2009 IATA

Only under very beneficial conditions all of them will be realised.

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

ALTERNATIVE FUELS

For CO2 reduction in Aviation - Biofuel (3rd generation - algae)

For security of the Power Industry -Synthetic Fuels (methanol)

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Aero Propulsion: Bio Fuels

Technical Issues to be resolved

- Lubrication capabilities
- Systems aggressive ?
- Spray formation
- Emissions
- Operability (Extinction, Altitude relight)
- Freezing Point, Flash point

02/2008: Virgin Atlantic successfully flew from London's Heathrow airport to Amsterdam using a biofuel made of a mix of coconut and babassu oil.

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Turbo and Jet Engine Laboratory Technion – Israel

5

Biofuels Characteristics

- Made from plants or animal fat.
- Organic compounds (C,H,O).
- Biodegradable
- Sources: Corn, soybeans, <u>algae</u>, jatropha, palm oil, coconut, babassu, vegetable oil and more.
- Zero/low aromatic content
- Zero/low sulfur content
- reduced emission of pollutants:
 - Typically Lower, CO, PAH & soot.
 - Lower Toxic, mutagenic and carcinogenic materials

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Biofuel classification

- Alcohol: short chained molecule (high O/C ratio), Oxygenated (R-OH), low calorific value (IC Engines)
- Biodiesel: Fatty Acid Methyl Ester (long carbon chain), Oxygenated, higher O/C ratio, intermediate calorific value (Diesel Engines).
- Bio SPK Synthetic Paraffinic kerosene, 100% Paraffin, no aromatic, higher calorific value (Jet engines)

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Fuel composition

Molecule type	Kerosene	Diesel	Biojet (HRJ)	Biodiesel
Normal and iso- Paraffin	50-65%	25-50%	95.1%	0%
Cyclo-Paraffin	20-30%	20-40%	4.9%	0%
Aromatics and Poly-aromatics	10-20%	15-40%	0%	0%
Olefin	5%	0%	0%	0%
Fatty Acid Methyl Ester (FAME)	0%	0%	0%	100%

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Kerosene and Biojet comparison

	Kerosene	Biojet*
Formula	C12H23	C11.93H25.76
Molecular weight	167	168.92
H/C ratio	1.92	2.16
Hydrogen content (%mass)	13.77	15.25
Density at 15°C (kg/m ³)	775-840	765.4
Viscosity at-20°C (mm ² /s)	Max. 8	5.11
Surface tension at 20°C (mN/m)	23-32	24.4
Aromatic content (v%)	Max. 25	0
Lower heating value (MJ/kg)	Min 42.8	43.8
Flash point (°C)	Min. 38	49
Freezing point (°C)	Max47 (Jet A-1, JP8)	-41.1
Auto-ignition temperature (°C)	245	222

* Hydro-treated Renewable Jet (HRJ) - DynamicFuels LLC. (2014)

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

The combustor model

Fuels tested:

- kerosene
- Diese
- methanol
- biojet
- biodiesel

Swirl

Fuel injector

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Temperature profile

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Emissions*

Thursday, November 6 2014

METHANOL - AN ALTERNATIVE FUEL FOR TRANSPORTATION AND INDUSTRY

Considered as synthetic fuel & an immediate alternative fuel

Pros: Availability (made of natural gas) Low cost, Can be transported & stored Good combustion properties

Cons:

Low energy density Can emit formaldehyde and Acrolein (toxic) Corrosive Low volatility

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

13

(ref: Dor Chemicals LTd.)

METHANOL COMBUSTION

Methanol has lower carbon content & lower combustion temperature and therefore has lower luminescence & lower radiation (than heavy oil)

HEAVY OIL

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Effect of fuel type on atomization

a) nozzle 1.25G/h (kerosene)

b) nozzle 2.75G/h (methanol)

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014 Radial SMD distributions at the different inlet liquid pressures, 50mm from the nozzle.

EVAPORATION TIME

Evaporation time ratio Vs. gas - liquid temperature difference for Kerosene and methanol corresponding to equal thermal power

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Evaporation rate [kg/s]

Evaporation rate [kg/s] of kerosene and methanol for equal thermal power;

- (a) complete evaporation point for kerosene;
- (b) complete evaporation point for methanol.

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014 Evaporation of kerosene and methanol fuel sprays in heated air stream 600K & 800K (for equal thermal power)

IGNITION DELAY - CHEMKIN SIMULATION

(Φ=0.5, Tin = 1000K, P=1bar)

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Ignition delay

CFD SIMULATIONS – swirl stabilized burner

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

The three different flow path lines through the combustor:

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014 core flow at the center of the burner

flow through the swirl vanes

flow the outer gap

CFD results - Contours of total temperature

Mole fraction of formaldehyde

Combustion model: EDC (Li Mechanism - 18 species and 84 reactions)

$(CH_2Omax = 3178 ppm, CH_2Oexit = 0.014 ppm)$

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Lengthwise temperature distribution (non insulated combustor)

• Methanol has larger fuel flow rate, longer evaporation & longer ignition delay.

• Methanol flame is delayed and requires longer distances for its completion.

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

NOx concentrations [ppm] (@15%O2, non insulated combustor)

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

CO concentrations (@15%O2, non insulated combustor)

Due to overall slower combustion process methanol requires larger distance to complete combustion

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Results and conclusions (biojet Vs. kerosene):

- 100% paraffin, shorter C chain, higher H/C and consequently less CO and UHC
- Biojet has higher adiabatic temperature and consequently higher NOx
- Still very high cost

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Results and Conclusions (biojet & methanol Vs. kerosene):

- Biojet is made of 100% paraffin, shorter C chain, higher H/C and consequently lower CO and UHC emissions.
- Biojet has higher adiabatic flame temperature and consequently emit higher Nox.
- Biojet has much high cost
- Methanol is an oxygenated molecule (CH3OH).
- For equal thermal power, methanol liquid flow rate is higher, evaporation takes longer time and it has shorter ignition delay. A as a result requires longer distances for its completion.
- Methanol has competitive cost
- More works should be performed to assure compatibility with regards to emissions (formaldehydes & acrolein) and operational limitations (LBO, radiative properties and more).
- Methanol is relevant for gas turbines (power stations) and as an emergency fuel for aviation, certain adaptation is requires in fuel storage & supply system. In some applications, dimensions have to be increased, else combustion will terminate as incomplete

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

28

THANK YOU the Turbo and Jet Engine Laboratory

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Turbo and Jet Engine Laboratory Technion – Israel

29

KEELING A FLAMEABLE IDEA

Climate assessment

Combustion products • depending on operating conditions • at cruise altitude

Climate is perturbed much differently by individual species.

(per kg kerosene)

	_	Δ		
1	Z	Z	7	

	CO ₂	NO _x	Contrails	water vapour	
Dependence on location	no	very	very	very	
Perturbation lifetime	Decades	O ₃ weeks (CH₄ months)	hours	Troposhere (0~10Km) - hours Stratosphere (10~50Km) – months	
Climate impact	Decades	Decades	Decades	Decades	

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Ref: Volker Grewe DLR-Oberpfaffenhofen, Germany

TEMPERATURE DISTRIBUTION ALONG THE COMBUSTOR TUBE (insulated combustor)

Kerosene and methanol comparison, summarized results Equivalence ratio ER=0.61

Combustion Model	Wall Temp., K	T max, K	T, K (average exit)	NOx, ppm(exit)
CFD. Kerosene. Non-adiabatic	850	2404	1452	45.7
Experimental. Kerosene. Non-adiabatic	870	-	1430 (CORRECTED)	55
CFD. Methanol. Non-adiabatic	880	2340	1352	10.6
Experimental. Methanol. Non-adiabatic	823	-	1380 (CORRECTED)	9.5

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

"Cold" simulation results

Recirculation zone moves

The 54th Israel Annual Conference on Aerospace Sciences Velocity vectors colored by velocity magnitude, m/s

Turbo and Jet Engine Laboratory Technion – Israel

34

Actual temperature estimation from thermocouple reading

Heat (energy) balance

$$hA(T_g - T_{tc}) \approx \varepsilon \sigma A(T_{tc}^4 - T_{wall}^4)$$
 (1)
Here

 $h = \frac{Nu\lambda}{d}$

 $Nu = 2 + (0.4Re_{dtc}^{0.5} + 0.6Re_{dtc}^{2/3})Pr_g^{0.4}(Pr_g/Pr_{wall})^{0.25} * (For sphere in laminar flow)$ Re = 183 $\epsilon = 0.9$ $Re=V_{o}d_{tc}/v_{o}$ $\lambda = 0.12 W/(m \cdot K)$ Nu = 21.2 $\sigma = 5.7 \cdot 10^{-8} Wm^2 / K^4$ Solution of equation (1) gives Nu = 21.2 $T_{wall}=943 K$ *For our case* $T_{tc} = 1423 K$ $Pr_{g}=0.57$ $Tg - Ttc \approx 199K$ $V_{\varphi} = 12m/s$ $Pr_{wall}=0.65$ $d_{tc} = 3mm$ **Ref.**: *I.L. Roberts et al. "Estimation of Radiation Losses from sheathed

thermocouples", Applied Thermal Engineering, 31 (2011), 2262-2270

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Performance Advancements

Evolution in Engines

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

New Aircraft Concepts (noise, drag, payload, speed)

BLB configuration and Contra Rotating Open Rotor

NACRE, Airbus (& partners incl. TsAGI) New Aircraft Concepts, 2005-2008 HISAC, Dassault (& partners incl. Sukhoi Environmentally Friendly High-Speed Aircraft 2005-2009

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

If we don't do any thing then....

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Flight Path 2050 Vision, (propulsion perspective)

- 75% reduction in CO2 emissions per passenger kilometre (cf. ATAG target).
 - 90% reduction in NOx emissions.
- 65% reduction of the perceived noise (Reference: 2000).

Aircraft movements are emissionfree when taxiing.

2050

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Propulsion: Alternative Fuels

Fuels Interchangeable with Kerosene

- Synthetic Fuels XTL (GTL, BTL, CTL)

(Gas-to-liquids, Biomass-to-liquids, Coal-to-liquids)

- Kerosene blended with Bio-fuels

BTL Environmental Issues

- Overall C02 balance (production consumption cycle > 0)
- Bio-Fuels: but no competition with land for food production
- 3rd generation: from algae, biomass

Economic and Regulatory Issues

- Industrial production
- Worldwide availability
- Business case

Certification

KLM Boeing 777-200 at the gate at JFK Int. Airport, NY.. First flight from Amsterdam. Biofuel made from processed frying fat. March 8 2013, (Courtesy: Boeing)

ETS (Emissions Trading Scheme)

THE 13TH (Bar Mitva) ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6 2014

Turbo and Jet Engine Laboratory Technion – Israel

40

07/2011: American Society for Testing and Materials (ASTM), International certifies blend of plant oil & animal fat

