

Methanol as a low cost alternative fuel for emission reduction in gas turbines

Joint Venture between IEC and Dor Chemicals

THE 13TH ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES Thursday, November 6, 2014

p"Nk - הסיפרא אוצוג

The Need for Methanol

- Dramatic increase in regulatory requirements for reduced emissions.
- Traditional methods of reducing NOx emissions, such as:
 - o modification of the firing system (DLN Dry Low NOx)
 - injection of water into the firing system (WLN Wet Low NOx)
 - post combustion treatment of the flue gas to remove NOx (such as SCR – Selective Catalitic Reduction)

All are very expensive!

Low cost alternatives should be checked!

Methanol as an Option

Methanol is a synthetic alcohol

Properties:

- Chemical Formula CH3OH
- Molecular weight 32.04
- Flash point 12 C (to 41 C)
- Auto-ignition temperature 464 C
- Combustion (Adiabatic) temperature 2045 C
- Low heating value 4777 kcal/kg
- Density 793 kg/ M³ at 30 C

Methanol is an Attractive Option

Methanol can achieve:

- Reduced NOx emissions lower flame temperature and no Fuel-Bound Nitrogen (FBN)
- No SO2 emissions has no sulfur
- Clean heat surfaces and lower maintenance clean burning characteristics of methanol (better than with HFO or even with LFO)
- Higher power output relative to NG and FO higher mass flow in GT engines

Two stage tests: 1 – to prove feasibility (Caesarea) 2 – to restore capacity and gain operational experience (Eilat)

Caesarea Power Plant Site

TP -1 Base Plate Assembly

Liner

Fuel Spraying Nozzles

Predicting the NOx Formation <u>Calculated</u> Flame Temperature Distribution at 100% Load

Predicting the NOx Formation

Comparison of <u>Calculated</u> NOx Formation Through Liner Length for FO#2 and for Methanol Firing at 100% Load

חברת החשמל Israel Electric

62 21

Diagram for Methanol Firing Test

Methanol Tank With Dike

Methanol Connection Junction

Emission Measurements Instruments

שמל

חברת הו Israel Electric

Test Results NOx Reduction

Israel Electric

Test Results

CO

Test Results

Particulates

היאג וגרפיקה - אא"א

Test Results

SO2

Following Stage Modification for a Long-Term Methanol Firing Test in Eilat

The Plan

A project to convert FT4C TWIN PAC 50 MW GT Unit in Eilat to Methanol firing (identical to the unit in Caesarea).

Objectives

- To restore the full capacity of the machine
- To gain long-term operating experience of working with methanol-fueled GT.

Schedule

Following summers for two years.

How To Restore Capacity?

The flow must be doubled.

There are a few bottle necks, as follows:

- HP pumps (Gear Box Driven) external pumps assembled on a skid
- Modulating Valve omitted flows are controlled by a Variable Speed Drive (VSD)
- Pressure & Dump (P&D) valves replacement of strainer
- Firing nozzles Excello Nozzles are replaced by set of High Flow Delevan Nozzles (which were developed for water injection to enable doubling the flow).

External High-Pressure Pumps

Replacing Nozzles to Delevan High Flow

Delevan Nozzles

Excello Nozzles

היצוב וגרפיקה - אא"ת

Restoring Capacity – Fuel Control & External Pumps

Two-Phase Test (in Eilat)

Short-term:

Check feasibility of the system and validate performance and low emissions (2-3 weeks).

Long-term:

Gain operational experience and confidence in the system (2-3 years, 1500-2000 hours each year).

Adapting Fuel Unloading and Storage System

- New unloading piping
- Tank adaptation floating roof

Adapting Fire-Fighting System

חברת החשמל Israel Electric

Fuel Unloading Platform

The unit prior adaptation to methanol

Methanol filters

Skid - methanol pumps

Direct connection to P&D Valve

Israel Electric

Control screen

שיצוב וגרפיקה - א"ת

Formaldehyde as function of GT load

The results presented here clearly show that with minor low cost fuel system retrofit, methanol firing leads to significant NOx, SO2, and particulates emission reduction, without affecting performance.

We believe that the results of the present work can be applied to other boilers and gas turbines.

