MOOG

Cold Spray Repair of Aerospace Components

Jarrod Schell Ben Hoiland Paul Blunden Isaac Izhaki Bob Bierk

Cold Spray – Technology

Cold spray is an additive manufacturing method where micron sized, metallic powder material is driven to high speed by a compressed carrier gas through a nozzle and directed at a substrate material. The resulting impact and associated particle/substrate's plastic deformation build a coating of the feedstock material onto the substrate. The resultant coating can be machined, heat treated or otherwise handled like stock material.

- Lowest operational temperature in thermal spray family
- Capable of highest particle velocity in thermal spray family
- Does not rely on melting/solidification of feedstock for adhesion

Cold Spray – Characteristics and Benefits

- HP Bond strengths ~ 80-100 MPa (12-15ksi)
- No oxidation
- Compressive residual stress
- Strain hardening
- High density low porosity (<1%)
- Thick coatings
- Heat treatable free forms
- Minimal surface preparation
- No distortion of substrate
- Limited masking
- Low substrate temperatures heating<120C (250F)
- Variety of substrates (Al, Mg, Cu, Ti, Steel, Glass)

Cold Spray – Shear Adhesion

ESTCP Triple Lug Data

Cold Spray – Ultimate Tensile and Yield Strength (Bulk)

UTS, YS, and percent elongation at failure for as-deposited 6061 Helium Cold Spray (yellow), in process annealed 6061 Helium Cold Spray (orange) versus wrought 6061.

Cold Spray – System Layout

Cold Spray – Compared

- Lowest operational temperature in thermal spray family
- Capable of highest particle velocity in thermal spray family
- Does not rely on melting/solidification of feedstock for adhesion

Ref R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs and P.H. Zajchowski, An exploration of the Cold Gas-Dynamic Spray Method for Several Materials Systems, Advances in Thermal Spray Technology, ASM International, 1995, p1-6

Cold Spray – Common Applications

- Recover wear/damage areas
- Enhance wear resistance
- Repair corrosion damage
- Prevent corrosion damage
- Recover mis-machined parts/manufacturing defects
- Surface build up
- Conductivity
- Dielectrics
- Thermal management

Cold Spray – Titanium Wear Area Recovery

Cross section of Cold Spray coated Hydraulic Tubing

Cold Spray – Titanium Wear Area Recovery

Cold Spray – Titanium Wear Area Recovery

Cold Spray Repair Demonstrated – Casting Defect

Casting defect in Magnesium Housing, New Part

Cold Spray Repair Demonstrated – Casting Defect

Pre-machined

Masked

As Sprayed

Finished Machined

Cold Spray Repair Demonstrated – Casting Defect

Photomicrograph of coating/substrate interface (400X).

Substrate Temperature Log

Coating Property	Results
Interface contamination	Abrasive particles per linear inch: Zero
(embedded grit)	Length examined: 0.400"
Porosity	Average value: 0.234% Standard deviation: 0.113% Minimum: 0.10% / Maximum: 0.51%
Cracks or interface zone separation	Non observed
Bond Strength	Average: 11925 psi (82.2 MPa)
Micro-hardness	Average value: 108.0 HV(0.2kg)

Cold Spray Repair Demonstrated Rotorcraft Accessory Cover

Cold Spray deposited on two areas of the as-cast surface and one (1) snap ring groove.

Cold Spray on As-Cast surface to be smoothed down to original surface by sanding or other accepted method.

Corroded Snap Ring Groove

As Received

As Sprayed

Prepared for CS

Finish Machined

- Cyclic Support Seat Bracket, Rotorcraft
- Multiple corrosion sites
- Removed, sprayed, blended

- Nose Wheel Steering Component
 - Refurbished with corrosion prevention coating.

As-Received → Pre-Machined → Cold Sprayed → Finish Machined

Cold Spray Repair Demonstrated – Wear

Air Inlet Housing – Recovery of Wear Area

As Received

As Cold Sprayed

Cold Spray Repair Demonstrated – Designed Wear

Tantalum Dome

Damaged Dome

As Sprayed

Cold Spray Repair Demonstrated – Designed Wear

Tantalum Dome – Niobium Ring

Damaged Ring

As Sprayed

Cold Spray Repair Demonstrated – Designed Wear

Tantalum Disc

Coupon

Repaired Disc - As Sprayed

Cold Spray Repair Demonstrated – Non-Designed Wear

- Two Repair Areas
 - Mid Shaft
 - Wear Lugs
 - SS 316 Coating

Cold Spray Repair Demonstrated – Non-Designed Wear

Titanium Fan Duct

Moog Proprietary and/or Confidential

Bearing Support Cover

Damaged

Cold Spray Repaired

Bearing Support Cover (reverse)

Damaged

Cold Spray Repaired

Bearing Support Cover (reverse)

Damaged

Cold Spray Repaired

Angle Gearbox

Damaged

Cold Spray Repaired (Crack is Weld Repaired)

Cold Spray Repair Demonstrated – Complete Restoration

Defective TBH

Machined TBH

Cold Sprayed TBH

Finish ground **TBH** surfaces

TBH protected by TAGNITE

TBH Finished w/Rockhard

Cold Spray Repair Demonstrated – IVD Replacement

Fully dense (1.2% porosity)

Cold Spray Manufacturing - Automotive

 New component manufacture – Cu solder zone with improved electrical and thermal conductivity over conventional plating process.

Pre-spray

As Sprayed

Moog Proprietary and/or Confidential

..And Others

Cold Spray Demonstrated – Evaluation

Engine Gearbox for Commercial Client Test Evaluation

Pre-Machined

As Sprayed

Moog Cold Spray Repair Capabilities

- High, Med, Low Pressure Machines
- Machining
- Inspection
- Testing

Moog Proprietary and/or Confidential

MOOG

Staff

- Product Line Engineering
 - FAA DER on Staff
 - FAA DER Major Repairs Systems/Equipment, Propulsion Accessories, Repair Specifications
 - Delegations for fixed wing and rotorcraft (Parts 23, 25, 27, 29)
- Experienced Cold Spray Engineers –all Degreed engineers with 5+ years cold spray specific experience
- Metallurgical Engineer Ph.D. on Staff
- AS9100 and AS9110 Certified
- FAA 145 Repair Station Certificate(s)
- Cold Spray Equipment CGT HPCS, Plasma Giken HPCS, Centerline LPCS and MPCS
- Other 5-Axis CNC, 3-Axis CNC's, Tooling Fixtures, CNC Lathes, NDT Capability, Full Metallurgical Lab Facilities

Benefits of Cold Spray Repair

- Significant total cost savings
 - Save on inventory, lead time and labor costs
- Repair time reduction
 - Can be used in-situ
- Improved production yield
 - Salvage parts with manufacturing defects
- Versatile coating method
- Numerous Coating/Substrate combinations
- Engineered coating properties
- Moog has complete Cold Spray Repair capabilities

MOOG

Acknowledgements

- Ranko Todorovic, Ph.D. Moog
- Christopher Howe Moog
- Jarrod Schell Moog
- Walter Mroch Moog
- Ben Hoiland Moog
- Mike Parzych Moog
- Victor Champagne ARL