

CDL

## A New Tunnel for Ignition Research

Iker Laso, Natali Rozin, Joël van der Lee, Joseph Lefkowitz

Combustion and Diagnostics Laboratory Faculty of Aerospace Engineering, Technion – Israel Institute of Technology

Introduction

Background

Previous conclusions

w design

1







Two cases:

- High-altitude relight of gas turbines [1]
- Ignition of high-speed engines [2]



[1] J. G. O'Connor, Starting system for gas turbine engines, U.S. Patent No. 3,426,527 (1969).
[2] L. S. Jacobsen et al., Plasma-assisted ignition in scramjets, Journal of Propulsion and Power 24 (2008) 4, 641-654.

#### Introduction

## Background

## Previous conclusions

v design





Flow features in high-speed combustors:

- Short flow **residence times:** ~ms
- Highly **turbulent flow** fields in the flame-holder:  $Re \sim 10^5$

Challenges for ignition:

- Establishment in the order of **milliseconds**
- Avoiding quenching of the kernel in the turbulent environment







Optimal method for **quiescent** mixtures: Single "breakdown" DC discharge: ~10 ns <sup>[3]</sup>



[3] R. Maly, Spark ignition: its physics and effect on the internal combustion engine, *Fuel economy*, Springer, Boston, MA (1984) 91-148.

#### Introduction

#### Background

#### Previous conclusions

v design

4







[3] R. Maly, Spark ignition: its physics and effect on the internal combustion engine, *Fuel economy*, Springer, Boston, MA (1984) 91-148.
 [4] S. V. Pancheschnyi et al., Ignition of propane-air mixtures by a repetitively pulsed nanosecond discharge, *IEEE Transactions on Plasma Science* 34 (2006) 6, 2478-2487.

Introduction

Background

Previous conclusions

v design

5





NANOSECOND

PULSED

HIGH

FREQUENCY

DISCHARGE

- High voltage: 10 100 kV
- Short periods of time: 1 100 ns
- High PRF: up to 1 MHz

## ADVANTAGES:

- Much lower (2 orders of magnitude) power deposition than a DC discharge for the same average electron number density <sup>[5]</sup>
- Can be applied for a long duration, increasing the volume of gas exposed to the discharge.
- No downstream transportation and breaking of the arc in flowing mixtures.

[5] M. Nagulapally et al., Experiments and simulations of dc and pulsed discharges in air plasmas, 31<sup>st</sup> Plasmadynamics and Lasers Conference (2000), 2417.

Introduction

## Background

Previous conclusions

ew design





## 1. Overview of ignition methods:



[3] R. Maly, Spark ignition: its physics and effect on the internal combustion engine, Fuel economy, Springer, Boston, MA (1984) 91-148.

[4] S. V. Pancheschnyi et al., Ignition of propane-air mixtures by a repetitively pulsed nanosecond discharge, IEEE Transactions on Plasma Science 34 (2006) 6, 2478-2487.

[6] J. K. Lefkowitz, T. Ombrello, An exploration of inter-pulse coupling in nanosecond pulsed high frequency discharge ignition, Combustion and Flame 180 (2017) 136-147.

#### Introduction

#### Background

Previous conclusions

v design

100 kHz

10 µs

300 kHz

3.3 µs

## 7

10 kHz

100 µs





NANOSECOND PULSED HIGH FREQUENCY DISCHARGE

Parameters that determine a successful and optimal ignition:

- Total deposited energy (E)
- Pulse repetition frequency (PRF) / Inter-pulse time (τ)
- Number of pulses (N)
- Gap distance (D)
- Equivalence ratio (Φ)
- Flow velocity (U)
- Initial temperature (T<sub>0</sub>)
- Initial pressure (P<sub>0</sub>)
- Turbulence regime
  - Fuel



Introduction

Background

NPHFD

Upstream

in the flow

**Previous conclusions** 

ew design











Parameters that determine a successful and optimal ignition: NANOSECOND Total deposited energy (E) Pulse repetition frequency (PRF) / Inter-pulse time ( $\tau$ ) NPHFD PULSED Number of pulses (N) Gap distance (D) HIGH Equivalence ratio  $(\Phi)$ Flow velocity (U) ۲ FREQUENCY Initial temperature  $(T_0)$ Upstream in the flow Initial pressure  $(P_0)$ ٠ Ignition phenomena Turbulence regime DISCHARGE and Fuel kernel growth rate Background Introduction Previous conclusions 10 18<sup>th</sup> Israeli Symposium on Jet Engines & Gas Turbines – November 28<sup>th</sup>, 2019





## 2. Flow parameters: Velocity (U)



[6] J. K. Lefkowitz, T. Ombrello, An exploration of inter-pulse coupling in nanosecond pulsed high frequency discharge ignition, *Combustion and Flame* 180 (2017) 136-147.

Introduction

### Background

Previous conclusions

ew design

11





## 2. Flow parameters: Velocity (U)



- Flow residence timescale
- Plasma timescale
- <del>Timescale of the flame front</del> ← U > 10 m/s

 $CH_4 + air$ N = 10 $\Phi = 0.6$  $T_0 = 300 \text{ K}$ D = 2 mm $P_0 = 100 \text{ kPa}$ 



[7] J. K. Lefkowitz, T. Ombrello, Reduction of flame development time in nanosecond pulsed high frequency discharge ignition of flowing mixtures, *Combustion and Flame* 193 (2018) 471-480.

Introduction

#### Background

Previous conclusions









 $\tau = 3.4 \times 10^{-6} s$  $\tau = 1 \times 10^{-4} s$ 20 mm 20 mm £ £ N = 1 2 3 5 10 20 50 N = 1 2 3 5 10 20 50

[7] J. K. Lefkowitz, T. Ombrello, Reduction of flame development time in nanosecond pulsed high frequency discharge ignition of flowing mixtures, Combustion and Flame 193 (2018) 471-480.

Introduction

#### Background

#### Previous conclusions

w design





## 2. Flow parameters: Turbulence regimes



[8] M. W. Peng et al., High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, *Combustion and Flame* 160 (2013) 9, 1755-1766.

#### Introduction

#### Background

Previous conclusions

w design

14







FIG. 1. Effect of initial temperature on minimum spark-ignition energy for n-pentane-air mixtures.

[9] I. R. King, H. F. Calcote, Effect of Initial Temperature on Minimum Spark-Ignition Energy, *The Journal of Chemical Physics* 23 (1955) 12, 2444-2445. [10] R. D. Stachler et al., The impact of residence time on ignitability and time to ignition in a toroidal jet-stirred reactor, *Proceedings of the Combustion Institute* 37 (2019) 4, 5039-5046.

#### Introduction

#### Background

Previous conclusions

ew design





## 2. Flow parameters: Fuels



| Fuel (Φ=1) | MIE (mJ) <sup>[11]</sup> |
|------------|--------------------------|
| Hydrogen   | 0.02                     |
| Ethylene   | 0.096                    |
| Propane    | 0.31                     |
| Methane    | 0.49                     |

Properties of liquid fuels that determine the MIE<sup>[13]</sup>:

- Surface tension
- Droplet size
- Cloud density

[11] J. B. Fenn, Lean Flammability Limit and Minimum Spark Ignition Energy, Commercial Fluids and Pure Hydrocarbons, *Industrial & Engineering Chemistry* 43 (1951) 12, 2865-2869.
[12] D. R. Ballal, A. H. Lefebvre, Ignition and flame quenching of flowing heterogeneous fuel-air mixture, *Combustion and Flame* 35 (1979), 155-168.
[13] P. M. de Oliveira, P. M. Allison, E. Mastorakos, Forced ignition of dispersions of liquid fuel in turbulent air flow, *55<sup>th</sup> AAIA Aerospace Sciences Meeting* (2017), 829.

## Introduction

#### Background

## Previous conclusions

design





## Higher U:

- Narrower fully-coupled regime
- Faster kernel growth rate

Different turbulence regimes and intensities:

- For higher turbulence intensities, MIE is higher
- There is a dramatic increase at high altitudes

## Higher T:

- Lower MIE and ignition delay times
- Helps with vaporization of liquid fuels

Different fuels:

• Different optimal injection and ignition parameters

Let's explore **beyond 10 m/s**!

Effect of **different turbulent intensities** on ignition probability and kernel growth rate?

Effect of **high T** on ignition probability and kernel growth rate?

Effect of **different fuels** on ignition probability and kernel growth rate?

Introduction

Background

**Previous conclusions** 

w design





Challenges for the new design:

- Higher temperatures
- Higher velocities
- Different **turbulent regimes**
- Different **fuels**:
  - Gaseous fuels (CH<sub>4</sub>, H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>3</sub>H<sub>8</sub>)
  - Heavy hydrocarbon fuels
  - Liquid fuels
  - Alternative fuels

Maximum flow properties:

- Temperature: 1000 K
- Pressure: 15 bar
- Air flow rate: **790 m<sup>3</sup>/min**
- Flow velocity: 100 m/s
- Reynolds number: 240,000

## Introduction

Background

Previous conclusions





Test section

A New Tunnel for Ignition Research Iker Laso, Natali Rozin, Joël van der Lee, Joseph Lefkowitz





Introduction

## Background

Previous conclusions



19







Introduction

## Background

Previous conclusions

New design





21

## Diagnostics

a) Schlieren imaging:



## b) IR imaging:











Assembly

A New Tunnel for Ignition Research Iker Laso, Natali Rozin, Joël van der Lee, Joseph Lefkowitz





## Introduction

Background

Previous conclusions



23











# Thank you ! תודה

With the support of:





Introduction

Background

Previous conclusions

v design

25





## Questions ? שאלות

With the support of:





Introduction

Background

Previous conclusions

design

18<sup>th</sup> Israeli Symposium on Jet Engines & Gas Turbines – November 28<sup>th</sup>, 2019

26