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“Getting Outmost Benefits from Turbine Cooling”

Boris Glezer, Optimized Turbine Solutions, USA

Presentation Objectives:

« UNDERLINE BENEFITS OF HIGHER OPERATING PRESSURES AND
TEMPERATURES FOR ENGINE SPECIFIC OUTPUT POWER AND FUEL
CONSUMPTION USUALLY OUTWEIGHING GREATER COMPLEXITY
AND RELATED COST

« EMPHASIZE CROSS-DISCIPLINARY NATURE OF ADVANCED TURBINE
DESIGN

« DEMONSTRATE NECESSITY FOR COOLING GAS TURBINE HOT
SECTION COMPONENTS WHEN ENGINE SUPERIOR PERFORMANCE
IS REQUIRED

« DISCUSS ADVANCED COOLING TECHNIQUES AND COMPRESSED AIR
DELIVERY SYSTEMS FOR MAIN HOT SECTION COMPONENTS

 ILLUSTRATE THERMO-MECHANICAL DESIGN FEATURES
MINIMIZING COOLING PENALTIES




F117-PW-100 ~$9M, Advanced Combustor Coolings

Thrust=18,500 kgf , Controlled :

=373 cm, PR=31, Diffusion Single Crystal Blades
core flow =94kg/s, Airfoils
weight 3120kg, '
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HOT SECTION COOLING

CFM 56-3 TRAINING MANUAL

P'\’!(l'?n:n:)ling Flow Estimates (based on industry experience and A comp. Tow
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CFM56-3 Cooling Flow Circuits
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Liner Film Cooling Options Advanced Low Emission Options

Hot Si

iggle-strips

—)

COMBUSTOR  EFFUSION CONVECTOR
WALL HOLES
‘ ——/
P “ ‘

2

=)

—

— E Splash cooling ring
Hot Side

I::?mpingement- Effusion
| L1 |

2 S

WA

a <

% Stacked ring

Hot Sid ‘

COMBUSTOR  IMPINGEMENT EFFUSION
WALL SHIELD HOLES
o ©
[e)
o
o © o © o
(o] o o o
o 2 o /
/@ “',‘.!“"
o =3
o

6

NS NNNANN\Y

==

4

IEEingement- film

——s

Detalls of Combustor Liner Cooling



U.S. Patent

-
<
w
©
L&)
-
o
g
<
O
g
<
-
—
1

6,098,397

Liner Backside Cooling Using Dimpled Surface



For 20,000 hrs life
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THERMODYNAMIC LOSSES: Removed Heat From The Airfoils And
Temperature Reduction in the Mainstream Due to Mixing W. Spent Cooling Air. For
Internally Cooled Nozzles and Blades Al;,,=0.2-0.3%; For Advanced Engines
with Film Cooled Airfoils Al]ien =1.0-2.0 %

EQUIVALENT LOSSES RELATED TO COMPRESSION OF THE COOLING
AIR: Al Vary from 0.5 To 2% Depending on a Stage of Air Bleeding From
Compressor and Location of the Spent Air Reentry

AIR PUMPING LOSSES INSIDE COOLED TURBINE BLADES: Al
~0.6%, If air is Discharged Into The Tip Gap

AERODYNAMIC MIXING LOSSES : Drag Effect On Mainstream Flow Due To
Reintroduction Of The Slower Moving Cooling Air Al] |i.,;=0.2-0.9% Depending
On Location Of The Air Discharge Along An Airfoil (Film And Trailing Edge)

LOSSES FROM THICKER PROFILE AND TRAILING EDGES OF
COOLED AIRFOILS: Profile Losses: Insignificant For Thicker Le And Middle
Portion Of The Airfoil But High Up To Al];,.,w=4.0 % For Thick Trailing Edges
LOSSES FROM ENTRIES OF THE COOLING AIR INTO THE
MAINSTREAM FROM DISC CAVITIES AND STATOR GAPS: AIl=2-3% In

Case Of 1% Radial Inflow And AI] =1% When Entering Flow Is Directed Parallel
To The Mainstream

Losses Related To Turbine Cooling

(ref. S.Kopelev “Cooled Gas Turbine Blades- Thermo-aero design”, Moscow, 1983)




PSFC at SL

(kg/hr)/kw *Experimental data obtained in ground testing
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Ref. “Gas Turbine Engines for Airborne Systems”, Lokai et.al, Moscow, Russia 1991.
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Example Of Advanced Nozzle Design
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Endwall 0-.8-% PCD Endwall 2% PCD

upstream film flow upstream film flow

Thermal paint mapping

Flow 3D Prediction:
flow streak of low

momentum coolant is (higher film blowing
pushed toward the ratio, steeper angle)
suction side

“Suppression” Of Horseshoe Vortex
With Upstream Film
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Nozzle Film Cooling Design for High TIT
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High temperature shroudless blades
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RB211 St.1 Shrouded Blade Cooling Design Evolution

(courtesy of RR)



(TRIT-Trel) at AH/u2>2

(TRIT-Trel) at AH/u2=2
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Effect of Blade Loading on TRIT,,

(ref. “Turbine Gas Path Design For Aeroengines” S. Kopelev, Moscow, 1984)
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Assumes combustor PF=0.3 and St.1 PR= 2.5

TImC (Compressor PR optimized for TIT) 20,000hrs life
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Before film holes are considered

Temperature
reduction °C |
50 /
Vane limits >
40 Blade limits —— =
PR =16
30T TRIT= 1150°C
Tc=450C
20
107
| | . | |
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TBC thickness mm

Few recommended
coatings:

TBC Yttrium stabilized
zirconium (YTZ) - airfoils
PWA 270 (NiCoCrAlY) —
oxidation-erosion resistant
coating- vanes

PWA 264 —-TBC for
endwalls
TBC 100 for platforms

PWA 275 — aluminide coat.
far internal vane cavity

Approximate Effect of TBC (YTZ) on Metal
Temperature of Effectively Cooled Airfoil
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* In general, film cooling effectiveness from discrete holes is less
effective than from slot injection due to jets from the individual
holes penetrating into the mainstream and permitting the hot
mainstream gas to flow under the secondary fluid close to the
surface to be cooled

. IH(t)t gas penetration and mixing are not present with injection
slots

 Long slots are rarely used in airfoils because of mechanical
design considerations. Shaped film holes provide a practical
compromise between cooling effectiveness and structural
Integrity

* In two-dimensional film cooling, the film cooling effectiveness
can generally be correlated as a function of blowing rate, or mass
flux ratio

Impact of Film Hole Shaping on C. Effectiveness
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2% tip clearance
1% fip clearance
z

Improvement of Stage

EfflClency with T|p Flow Dlscharge

Utilization of LE Spent Coollng Flow for Tip
“Flag” Cooling



Loss estimate: P/P_=ym.J/m_Ma?/2 (1+Tc/Teo- 2Vc/V oo cosa)
Ref. Hartsel, J. E., 1972,

Turbine Efficiency

Change (%) Due

to Film Injec_;ign SQ

-0.4

- 0.6

-1.0
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Percent of Compressor Flow Injected

Film Related Turbine Efficiency Losses
(Ref. B.Barry, 1976, von Karman LS 83)
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PSFC at SL

(kg/hr)/kW *Experimental data obtained in ground testing
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Typical Airfoil Cooling Penalties

“Aero losses from film injection” Day, Oldfield& Lock, Experiments. In fluids, Verlag, 2000



Nozzle Vanes have to be designed for a peak hot-spot temperature anywhere in
the LE except near the tip and hub (10-15% from the endwalls)

Air flow for the shower head cooling of the LE practically does not affect stage
performance but reduces effective gas temperature that has to be
compensated by higher TIT

Relatively high endwall film cooling flow introduced upstream of the LE is
beneficial for both cooling and turbine performance

When airfoil film cooling is required, the long compound angle holes provide
larger heat transfer area and improved cooling effectiveness

Certain flow pressure margin is required in the internal cavity upstream of
cooling air discharge to the mainstream

Spent cooling air discharge through the trailing edge or on the pressure side
near the TE results in very low performance penalties

Spent cooling air discharged into the blade tip region usually results in
improved stage efficiency

Design features in the blade interior providing conducting path between
suction and pressure surfaces, especially near the TE assist in more uniform
temperature distribution along blade profile

Special design effort is required to prevent cooling air heating by friction in the
disc cavity; preswirler has to be always considered as a part of the blade
cooling supply system

Major Requirements for Nozzle and Blade
Cooling System Design
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* DISCHARGE THE SPENT COOLING FLOW AS EARLY AS POSSIBLE
ALONG THE GAS PATH

* BLADE SPENT COOLING AIR DISCHARGE INTO THE BLADE TIP
GAP MAY MINIMIZE PENALTIY AND EVEN IMPROVE STAGE
PERFORMANCE

* USE SHOWER HEAD COOLING FOR THE LEADING EDGE OF THE
FIRST STAGES OF AIRFOILS ONLY IF NECESSARY

* DESIGN THE COOLING SYSTEM ATTEMPTING TO DISCHARGETHE
AIR AT ATEMPERATURE APPROACHING ALLOWABLE LOCAL METAL
SURFACE TEMPERATURE

* MINIMIZE MIXING LOSSES BY CLOSELY MATCHING VELOCITY
VECTORS BETWEEN MAINSTREAM AND DISCHARGED COOLING
FLOWS. THIS REQUIRES MINIMIZING PRESSURE LOSSES IN THE
INTERNAL COOLING PASSAGES

* AVOID COOLING AIR DISCHARGE ON SUCTION SIDE OF THE
AIRFOIL, ESPECIALLY DOWNSTREAM OF THE THROAT

* REDUCE INTERNAL COOLING FLOWS UTILIZING THERMAL
BARRIER COATING (TBC)

* USE PRE-SWIRLING MECHANISM FOR BLADE COOLING SUPPLY
SYSTEM LOWERING THE RELATIVE TEMPERATURE OF THE
COOLANT AND REDUCING DISC FRICTION LOSSES

SUMMARY: Main Design Rules for Minimizing
Cooling Penalties




