

Thermomechanical Fatigue, Sulfidation and High Cycle Fatigue of JT3D Engine Turbine Blade

Maj. Inna Kaparovsky IAF-FAI

Background

- Israeli Air Force B707 Tanker aircraft experienced elevated EGT and vibration on one of the engines and was commanded inflight shut down (IFSD) by the crew.
- The engine, Pratt& Whitney JT3D-3B, was last overhauled 383 flight hours prior to the IFSD

Background

Failure Analysis Department

JT3D Engine

Disassembly Findings

Single fractured High Pressure Turbine Stage 1

Blade (~1/3 blade height)

Disassembly Findings

Low Pressure Turbine airfoil damage

Stage 4

Fractured Blade

Fracture Surface

*Inconel 718

Failure Analysis Department

Fracture Surface

Fracture Surface - HCF

Fracture Surface - Mixed HCF & Overload

Additional 1st Stage HPT Findings

10 additional blades with cracks

All 10 blades have similar markings:
 no evidence of the coating on the fracture surface at the origin area to indicate that a crack had been present during the last strip and recoat cycle

Failure Analysis Department

Metallographic Section - Microstructure

Metallographic Section - Microstructure

- The coating exhibited a uniform typical three-zone microstructure
- Bulk microstructure appeared typical with no evidence of temperatures 2000°F or above

• EDS spectrum:

(Energy dispersive spectroscopy)

Failure Analysis Department

EDS maps:

- Oxidation on fracture surface
- Alloy depleted layer along the fracture surface indicative of <u>Sulfidation</u>

1st Stage HPT Blade #16

Conclusions

- The cause for the engine failure was the fracture of a single High Pressure Turbine Stage 1 blade.
- The blade fracture was due to High Cycle Fatigue propagating from an initial crack
- The initial crack is a Thermal Mechanical Fatigue crack originating at the lead edge at approximately 30% span
 - The TMF was accompanied by Oxidation and Sulfidation process

Conclusions

- TMF cracking was found at similar locations on 10 other blades with similar markings suggests a shared service
- There were no material, manufacturing, service or overhaul factors that were identified as probable contributors to the blade fracture
- The most probable cause for the TMF crack is the blade material having exceeded its useful TMF life

Recommendations

 limit blade service life to three service intervals (first run and two strip and recoats)

Questions?

Failure Analysis Department

