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« Worldwide spending on UAVs
expected to reach $70 billion by 2020

« UAVs comprises about 1/3 of USAF
aircraft

« MALE (medium altitude, long
endurance) UAVs tend to be powered
by IC engines

General Atomics MQ1 ROTAX 914
Predator 4-cyl. 4 stroke w/ turbocharger
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MALE UAV propulsion:
« GT efficiencies drop at smaller scales

* IC engines have greater efficiency, but suffer relatively low
power-to-weight ratios

* Thus, methods to improve engine cycle efficiencies have
significant impact potential in the global UAV market

* Considering 30% of thermal energy in IC engine combustion is
expelled in waste gas, bottoming cycles can be implemented to
utilize this heat and boost overall efficiency
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Turbocharging:

* Draws exhaust energy towards
compressing inlet flow

 Boosts engine performance T

» Turbine exhaust is open to ia
atmosphere directly 1
v

» Turbine imposes backpressure on
exhaust stroke

 Engine inlet and outlet conditions are
manipulated by turbo components ©

IC ENGINE
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Inverted Brayton Cycle:

» Secondary shaft for additional power

* Turbine expands into sub

atmospheric pressures set by
compressor

- Low backpressure on the exhaust
stroke

« Heat recovery not limited by
atmospheric conditions

 Engine inlet and outlet conditions
remain the same
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*|BC with recuperated combustion for CHP application
*|BC as bottoming cycle for micro turbines
*|BC as bottoming cycle for automotive IC engines

= Experimental Prototypes

e Kawasaki Heavy Industries (2006): functionable 3 kW,
prototype (recuperated combustion chamber)

*DLR Stuttgart (2017): experimental setup using an ENERTWIN
micro turbine to establish the IBC

Market Maturity

eCurrent efficiencies are not sufficient
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Component Selection

Turbomachinery Heat exchanger

Thermodynamic Simulation in MATLAB

Development of component models Preliminary and detailed simulations

Experimental Set-up

CAD design Assembly and commissioning
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Turbomachinery

e Turbocharger components (BorgWarner)
e Selection by preliminary estimations
e VTG turbine

Gas to liquid heat exchanger

* EGR coolers (high availability, low cost)
e Shell-and-tube type
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IBC Main Program — Iterative Calculation Algorithm
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Non-Recuperated Cycle

e Simplified model for validation and preliminary estimations
e |BC shows an optimum sub-atmospheric pressure for different TIT

e Heat exchanger and turbomachinery efficiency highly significant
IBC Thermal Efficiency
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Non-Recuperated Cycle
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Preliminary assessment for the enhancement of UAV mission

with IBC: Hermes 900 UAV mission

e Mission specifications:
e Turbocharged, four-cylinder ROTAX 914 piston engine
e Fuel consumption at 4500 RPM: 151/hr
 Total flow rate through engine: = 0.06 kg /sec
e Power production at 4500 RPM: 60 kW
e Actuator load: = 5 kW
e Mission length: 30 — 40 hrs

e IBC performance:
e 6 kW of electric power
e 1.51/hr savingsin fuel

e Reduction of ~ 30kg from the overall UAV mass that can be utilized for
extension of mission duration or increased payload
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Fosilion
1 Turbine Iniet Hozzie
2 Kolior T15 Jet Engine’
3 Honeycomi Casing
Meazrement Adapter Tube
Turine Shaft and Whee!
3 Compressor Wheel
7 Intermediate Shaft
E Superchanger Volute
B Honeycome
Traction Crive:
1 Coupling
12 Bectric Generat:
13 Generator Casing
14 Turbine Cutiet Megsurement Adapter
Hear Exchanger Manioid
14 EGR Cooler
17 Shamiess Stesl Fipe
Heat Exchanger Measument Adapter
19 EFDM Tube
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| inlet nozzle for mass
flow measurement




allp " Experimental facility: g TECHNION

and
Israel Institute

|l i——y Turbocharger assembly of Technology

turbine et
light fiber 2\ | a |

e

compressor nut

oilPandT




‘vl Turbomachinery Experimental facility: o~ TECHNION

and

Heat T f Israel Institute
"‘ E:bo:aat"::sr:r Heat eXChaI’I er u of Technolo
gy

2017-06-05 13:37

manifold splits mass flow

gas-to-liquid heat exchanger: 6
EGR coolers
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Intermediate shaft

e Connects turbocharger
with transmission shaft

e Flow straightener before '/ 4@%\
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Ay Relevance of IBC of Technology

Inverted Brayton Cycle

e Advantages:

e Does not interfere with primary engine cycle

e Operates at low backpressure

e Allows turbine expansion beyond atmospheric limitations
e Broad spectrum of applications

e Challenges:

e Effective IBC requires high component efficiencies, particularly of
turbomachinery and heat exchanger

e Optimum expansion ratio requires careful system design

e Sub-atmospheric pressures in the IBC system requires efficient
sealing of cycle components and separation of condensed water
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Thermodynamic Simulation

e Development of simulation software
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e Calculations for prototype design

Experimental Facility

e CAD design of an experimental test rig

e Selection of measurement techniques
e Assembly of the test rig
e Preliminary operation tests
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Ay Further research efforts of Technology

Experimental Facility — still to come

e Generator

e Advanced sensor array

e Experimental campaign

e [terated component optimization
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Thank you for your attention!




