

TRANSONIC LINEAR CASCADE

THE 15TH ISRAELI SYMPOSIUM ON JET ENGINES AND GAS TURBINES

17/11/2016

Turbomachinery & Heat Transfer Laboratory
Faculty of Aerospace Engineering
Technion - Israel Institute of Technology, Israel

Motivation

New challenges rise due to increase in demands from small

gas turbine engines

- Limited flow velocities yield a decrease in design Reynolds number
 - Viscous forces are increased in relation to the inertia forces previously not researched fields become priority

Transonic Linear Cascade

- There is market need for compact, low cost and fuel efficient engines which are highly efficient at both design and off design conditions
- Micro dimensions require extensive experimental turbine aerothermal performance studies
- Transonic linear cascade is a tool to conduct test aided design for:
 - Vane aerodynamic performance evaluation
 - Design of advanced cooling techniques

Cascade Investigations

- Turbine Performance Investigation
 - Turbine Airfoil Aerodynamic Testing
 - Improved Transonic Flow Loss Correlations and Design Rules
 - Film Cooling Penalty Measurement
 - Characterization of Downstream Thermal Wakes
- Cooling Investigation
 - Film Cooling Effectiveness Assessment for Various Configurations
 - Internal Blade Cooling Performance Estimation
 - Thermal Barrier Coating Effectiveness and Health Monitoring Evaluation
 - Disk Cavity Cooling Main Stream Flow Interactions
- Advanced Future Geometry and Cooling Technique Development
 - Effusion, Transpiration Cooling, Variable Stagger Turbines (VST)

Operational Requirements

Versatility

- Continuous operation at transonic conditions
- Variable angle of attack
 - Off-design studies

- Variable stagger angle
 - Influence of flow turning angle for design optimization
- Periodicity at all operational conditions

Cascade Operational Envelope M↔Re Independence

- Envelope limited by compressor mass flow
 - Full line ("Open Loop") 0.9 kg/s (comp. inlet at 1atm)
 - Dashed line ("Closed Loop") 0.3 kg/s (comp. inlet at 0.3 atm)

Transonic Cascade Operational Envelope

Cascade Operational Envelope Limitation Breakdown

Cascade Operational Envelope Limitation Breakdown

Transonic Cascade Operational Envelope

Operational Envelope

- The operational envelope is bounded by:
 - Maximal inlet pressure
 - Minimal outlet pressure
 - Maximal mass flow

- Two modes of operation:
 - Open loop: cascade outlet is atmosphere
 - Closed loop: cascade outlet is fed into the driving compressor

Facility Layout

- 1. Compressor Inlet
- 2. Small Tank Inlet
- 3. Heater Inlet
- 4. Test Section Inlet

- 5. Valve Inlet
- 6. Main Tank Inlet
- 7. Main Tank or Chiller Inlet
- 8. Chiller Outlet

Room Schematic

Cascade Assembly

Cascade Properties:

- Materials:

➤ Metal Components: Stainless Steel

➤ General Sealing: Sealing Sheets

- Temperature:

➤ Unheated - 350K (80°C)

➤ Heated - 650K (350°C)

- Maximum Pressure: 6 bar

Size: 2x1.3x0.07 [m]

Mass: 300 kg

Cascade Assembly

- 4 main sub assemblies:
 - Inlet (2)
 - Main Frame (1)
 - Rotating Disks (4) test section
 - Outlet (3)
- Inlet pipe diameter: 6 inch
- Outlet pipe diameter: 6 inch
- Inlet and outlet are connected with round-to-square adapter

ITEM NO.	PART NUMBER	DESCRIPTION	Turbine Cascade/ QTY.
1	LCA0040	Main Frame	1
2	LCA0190	Inlet	1
3	LCA0180	Outlet	1
4	LCA0170	Rotating Disk	1
5	LCA0210	Upstream Measurement Stages	1
6	LCA0220	Downstream Measurement Stages	1
7	LCV0010	C3X Vane	5

Flow Simulation Results Mach Number

Flow Simulation Results Total Pressure

Rotating Disks - Frontboards Frontboards Movement

Cascade Stand

- Horizontal orientation for maintenance and test section replacement
- Vertical orientation for experimental runs
- Orientation control with manual brake winch

Flow Features From Simulation

Flow Features From Simulation

Flow Features From Simulation

Flow Simulation - Main Vane

Flow Features From Simulation

- Flow simulation Boundary Layer Suction
 - Up to 1.5% mass suction (valve controlled)
 - Suction throat area = 26 mm²

Measurement Review

- Aerodynamic Performance Measurement
 - Integral loss correlation
 - ▶ P₀ measurement
 - Total pressure field mapping
 - ➤ 5-hole probe traversed upstream and downstream
 - Density field measurement
 - Quantitative Schlieren imaging
 - Shock loss correlations

- ➤ PIV Particle Image Velocimetry
- Endwall loss, mixing loss, profile loss correlations, flow separation assessment

Measurement Review

- Colling Effectiveness Measurement
 - Cooling performance assessment
 - ➤ Air heated by compression (350K)
 - ➤ Additional heater (650K)
 - IR thermography
 - Surface temperature distribution
 - PSP Pressure Sensitive Paint
 - > Investigation of cooling performance
 - ➤ Chemically different gases

Conclusion

- The Technion Transonic Linear Cascade (TTLC) is to become a tool to allow test aided design for the industry
- Re-M independency allows research at a range of Reynolds numbers while maintaining transonic conditions
- The TTLC allows versatility of research over various tested components
- TTLC shall pioneer turbine research in Israel

Questions?

Thank you for your attention!