
ADVANCES IN DETONATION BASED ENGINES **RELEVANT UNSTEADY** TURBOMACHINERY FLOWS

Tuesday, November 26th, 2019

11:40 - Prof. Guillermo Paniagua

o Experimental work on detonation

12:45 - Prof. Guillermo Paniagua

o Design, performance and optimization of supersonic axial turbines o How to retrofit existing gas turbines with rotating

Aerospace Faculty Library | 08:00-17:30

08:00 - Registration and Introduction

8:30 - Prof. Guillermo Paniagua

- ^o Detonation based cycles, difference between detonation and deflagration
- ^o Types of pressure gain combustion concepts o Rotating detonation based cycles for different applications:
 - Single shaft, turbojet
 - · Power delivered to a shaft, turbo-shaft

9:15 - Dr. Bayindir Saracoğlu

- ^o High-fidelity modeling of constant volume combustion
- Numerical modeling of detonation combustors with finite-rate chemistry

detonation combustors o Development of radial outflow turbines o Alternative turbine designs, such as bladeless turbines o Preliminary testing of the detonation with a turbine

14:00 - Dr. John Clark

- o High lift / High work low pressure turbine design and the impact of unsteadiness Part I - Turbine Aerodynamic Design Process Iterative design loop: an example for a multi-stage, low pressure turbine
 - Meanline design to meet cycle requirements
 - · 2D profile design
 - 3D stacking and steady Navier-Stokes analysis
 - Unsteady Navier-Stokes analysis

· Governing equations, flux calculations and limiters

9:45

10:00 - Dr. Bayindir Saracoğlu

- High-fidelity modeling of constant volume combustion
 - · Conjugate heat-transfer modeling of detonation engines
 - > Treatment of fluid-solid interface
 - > Long duration operation of RDE Effect of detonation waves on the compressor flows
 - > Numerical simulations on the radial compressors subjected to periodic pressure fluctuations
- ^o Interaction of detonation waves with downstream components
- Wave propagation through the nozzle guide vanes ^o Alternative considerations: Magneto-hydrodynamic (MHD) power extraction from detonation combustors Principles of MHD power extraction Governing equations and test setup Benefits and limitation of MHD power extraction from detonation engines

15:15 - Dr. John Clark

o High lift / High work low pressure turbine design and the impact of unsteadiness

- Part II Important Flow Physics and Modeling
- · General observations: The Reynolds Lapse
- Boundary-layer transition
- Boundary-layer separation
- Secondary flow
- Unsteady interactions

16:30 - Dr. John Clark

- o High lift / High work low pressure turbine design and the impact of unsteadiness Part III - Design Studies and Validation Experiments
 - · Cascades:
 - > L-series airfoils
 - > Design for secondary flow management
 - > Passive flow control
 - Compressible flows
 - · Stages:
 - > ND-HiLT01
 - > Further design improvements

