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Context and motivation

• Energy transition towards renewable production

• Highly fluctuating 

• Necessity to store energy: green hydrogen

• Challenges: production, storage, transport 

and 

• Reconversion to electricity

- Efficient: high thermal efficiency

- Large scale (500 MW)

- Without emissions 
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Hydrogen oxyfuel cycles

working fluid + 2H2 + O2 = 2H2O + working fluid 



Basic principle of a hydrogen oxyfuel process in 

steam

• „Combining gas turbine philosophy with steam plant practice“ 

Jericha et al. (1995) [1]
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steam cycle
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HRSG: heat recovery steam generator

CC:      combustion chamber

HP:      high pressure

HT:       high temperature

P:         pump

LP:       low pressure

steam cycle
Fully condensing cycles
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HRSG: heat recovery steam generator

CC:      combustion chamber
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History and evolution of the hydrogen oxyfuel

steam cycles
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Mitsubishi
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Toshiba
Multiple cycles [4,5]
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Graz cycle [1] [3] [12] [13] [14][15]

Fully condensing cycles

Partly condensing cycles
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To this date:

no cycle has been built



Fully condensing cycle: Toshiba principle
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• Extraction of 

unburned H2 and O2

• Low complexity
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• Very high thermal stress in HRSG

• Depending on high TIT

Thermal efficiency: 72.15 %



Partly condensing cycle: Graz principle

• Splitting point (3)

- Crucial

- Grants flexibility

• Two most relevant cycles

- Mitsubishi

- Graz

• Highly flexible

• High complexity

• Thermal efficiency: 70.35 %

1019th Israeli Symposium on Jet Engines & Gas Turbines



High temperature turbine cooling
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• Simplified model required

• Cooling and expansion treated independently:

1. Calculation of cooling mass flow

2. Mixing with the main steam

3. Expansion with reduced polytropic efficiency 

Film and convective cooling



High temperature turbine cooling
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• Simplified model required

• Cooling and expansion treated independently:

1. Calculation of cooling mass flow

2. Mixing with the main steam

3. Expansion with reduced polytropic efficiency 

Hybrid cooling



Selected cycles and model validation

• Validation with parameters from 

original description and 

adopted cooling technology:

- Toshiba: hybrid cooling

- Graz: film and convective 

cooling

- Mitsubishi: none
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Results of the validation: cycle thermal efficiencies

Cycles Original Own model Relative error

Toshiba 72.15 % 70.90 % -1.73 %

Graz 70.35 % 70.89 % 0.77 %

Mitsubishi 73.52 % 74 % 0.62 %

• Selection criteria:

- Turbomachinery limits

- Thermal efficiency

- Complexity 

• Selected cycles:

- Toshiba

- Graz

- Mitsubishi



Researching and defining modelling parameters
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• Cycles in the literature calculated with different parameters

Not comparable

• High parameters assuming fast technological progress

Too optimistic

Not up to date 

• Research and redefinition of uniform and presently achievable 

parameters

Main cycle parameters Unit
Near future/

optimistic
Present/

conservative

HTT inlet temperature [°C] 1700 1600
HPT inlet temperature [°C] 720 620

HPT inlet pressure [bar] 310 250
condenser pressure [mbar] 35 50

LP Turbine wetness [%] 10 to 12

compressor pressure ratio [-] 42 32

H2 und O2 temperature [°C] 15



Results of the performance analysis
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• Highest efficiencies:

- Mitsubishi

- Graz

- Toshiba

• Highest increase in

thermal efficiency:

- Graz

- Mitsubishi

- Toshiba

Calculated thermal efficiencies



Conclusions

• Hydrogen oxyfuel steam power plants as a solution for 

reconversion of green hydrogen to electricity

• Cycles can be categorized in fully and partly condensing cycles

• Selection of the most likely regarding technical limitations, 

complexity and efficiency

• Results of the performance analysis:

- Efficiencies > 70 % achievable

- Fully condensing cycles

• Lower complexity

• Safer regarding extraction of unburned H2 and O2

- Partly condensing cycles

• Highest efficiencies with 75 % for the Mitsubishi cycle

• High flexibility regarding TIT 

1619th Israeli Symposium on Jet Engines & Gas Turbines



Outlook

• Start-up analysis

• Steam generation and availability

• Optimization of the Toshiba cycle through reheating

• Water and hydrogen storage capacity demand

• Research on:

- Gas turbine design suited for steam as a working fluid

- Heat Recovery Steam Generator material

- Creep resistant material

- Hydrogen detection in steam

- Combustion chambers for stoichiometric combustion in steam

• Research at the LSM in Hamburg: designing and building a 

prototype cycle at a small scale
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