

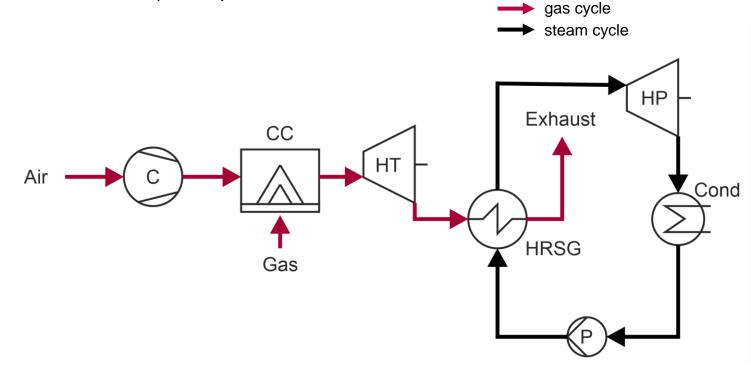
Performance Evaluation of Hydrogen Oxyfuel Steam Cycles

David Bocandé, M. Sc. Prof. Dr.-Ing. Markus Schatz

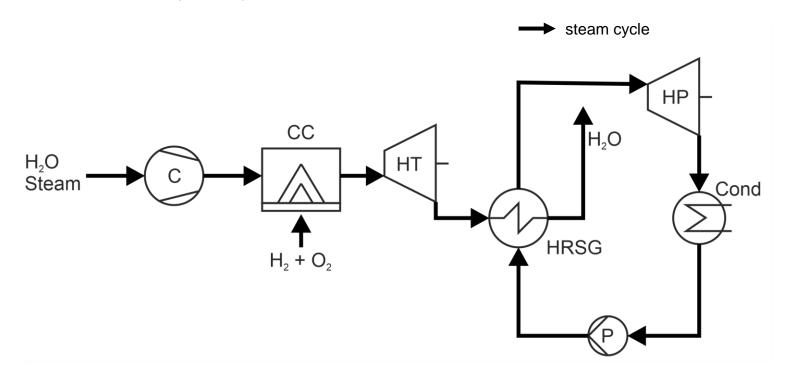
Chair of Fluid Machinery for Energy Technology Helmut Schmidt University University of the Federal Armed Forces Hamburg

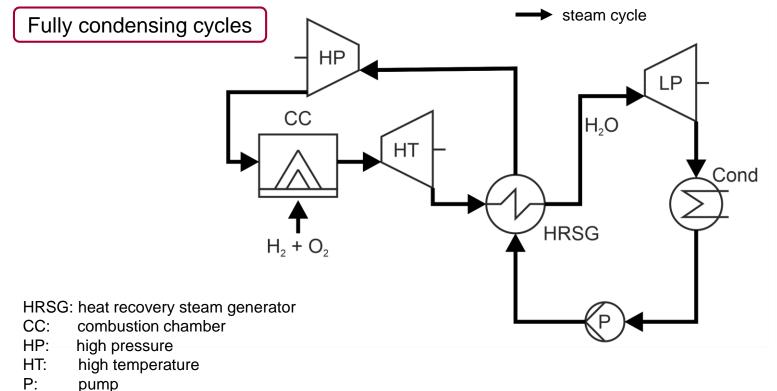
Context and motivation

- Energy transition towards renewable production
- Highly fluctuating
- Necessity to store energy: green hydrogen
- Challenges: production, storage, transport and
- Reconversion to electricity
 - Efficient: high thermal efficiency
 - Large scale (500 MW)
 - Without emissions

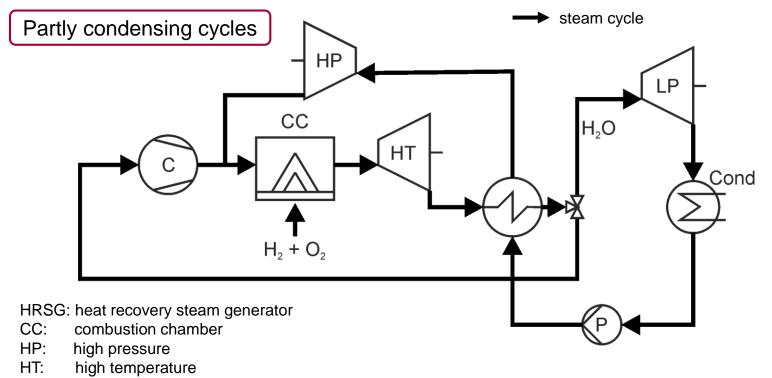

Hydrogen oxyfuel cycles 🕈

working fluid + $2H_2 + O_2 = 2H_2O + working fluid$


 "Combining gas turbine philosophy with steam plant practice" Jericha et al. (1995)^[1]

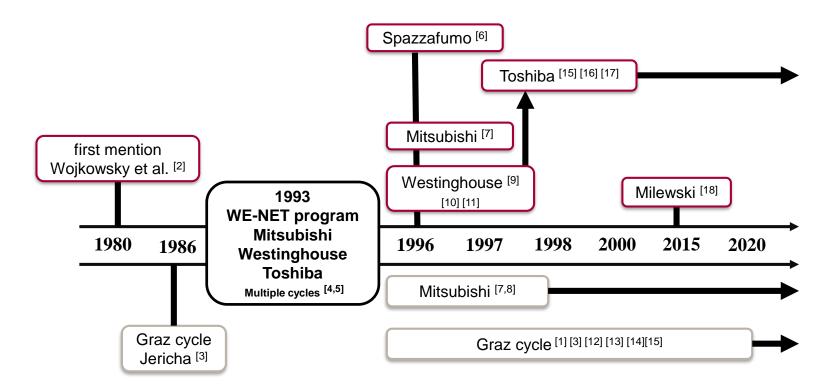

 "Combining gas turbine philosophy with steam plant practice" Jericha et al. (1995)^[1]

 "Combining gas turbine philosophy with steam plant practice" Jericha et al. (1995)^[1]



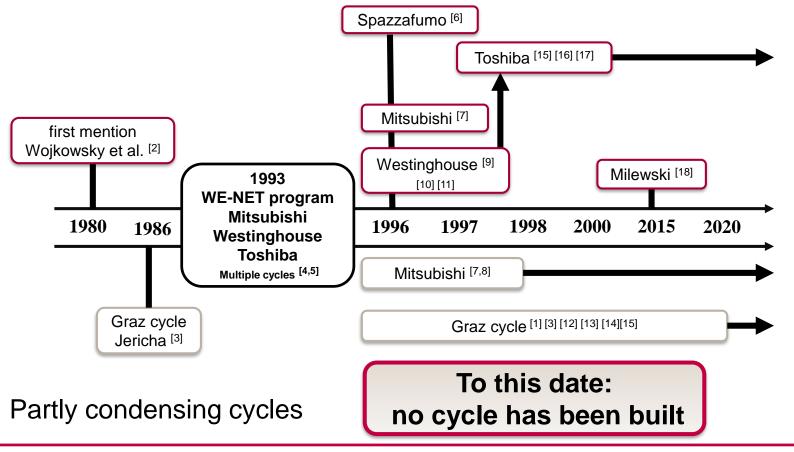
LP: low pressure

 "Combining gas turbine philosophy with steam plant practice" Jericha et al. (1995)^[1]


- P: pump
- LP: low pressure

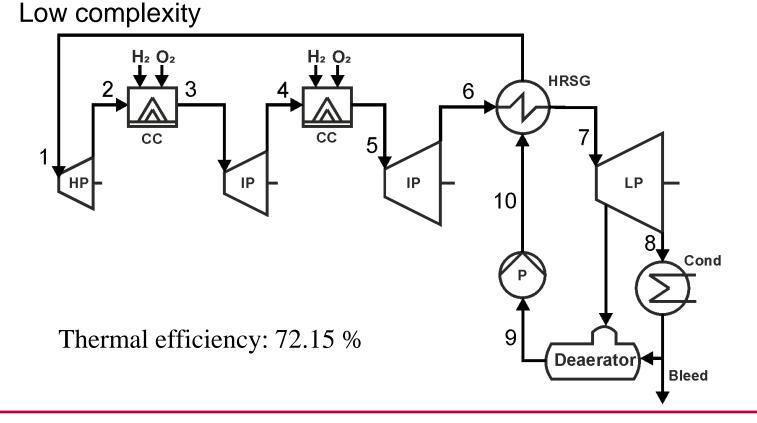
History and evolution of the hydrogen oxyfuel steam cycles

Fully condensing cycles


Partly condensing cycles

History and evolution of the hydrogen oxyfuel steam cycles

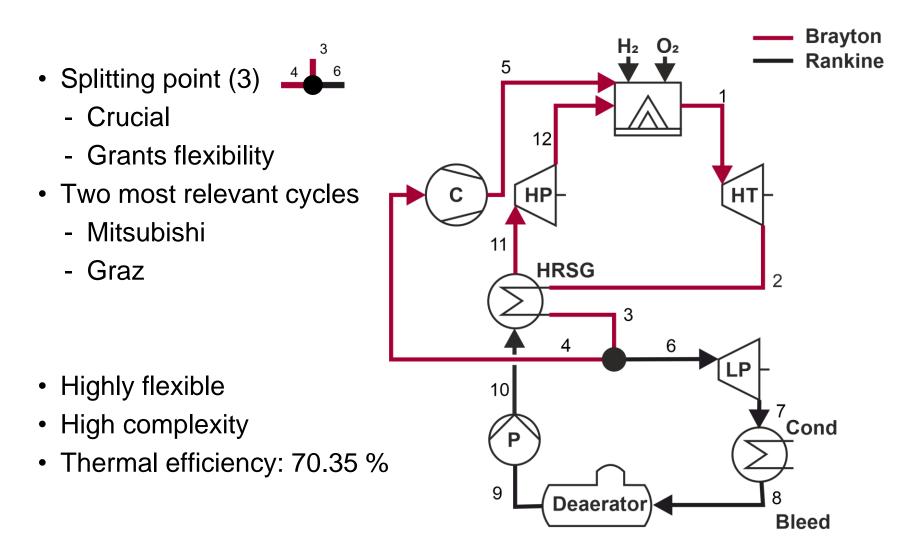
Fully condensing cycles


19th Israeli Symposium on Jet Engines & Gas Turbines

Fully condensing cycle: Toshiba principle

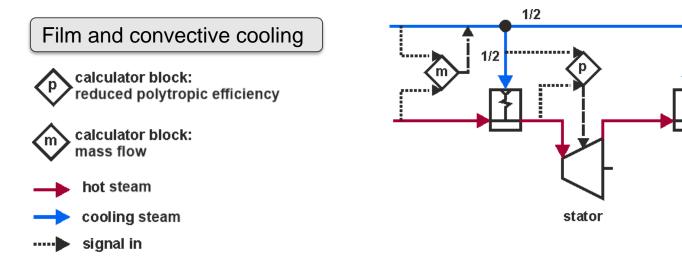
 Extraction of unburned H₂ and O₂

- Very high thermal stress in HRSG
- Depending on high TIT



۲

Partly condensing cycle: Graz principle



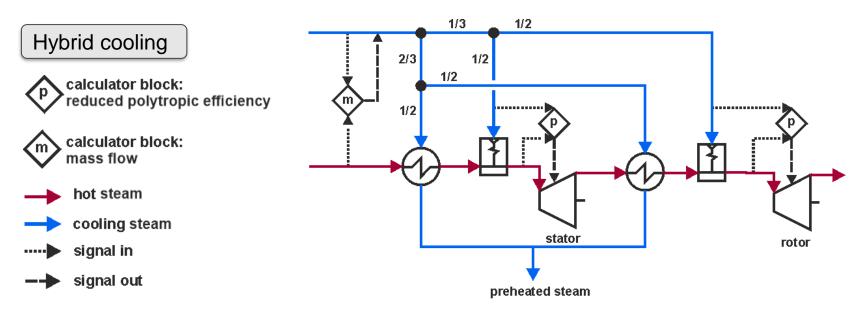
19th Israeli Symposium on Jet Engines & Gas Turbines

High temperature turbine cooling

• Simplified model required

signal out

- Cooling and expansion treated independently:
 - 1. Calculation of cooling mass flow
 - 2. Mixing with the main steam
 - 3. Expansion with reduced polytropic efficiency



11

rotor

High temperature turbine cooling

- Simplified model required
- Cooling and expansion treated independently:
 - 1. Calculation of cooling mass flow
 - 2. Mixing with the main steam
 - 3. Expansion with reduced polytropic efficiency

Selected cycles and model validation

- Selection criteria:
 - Turbomachinery limits
 - Thermal efficiency
 - Complexity
- Selected cycles:
 - Toshiba
 - Graz
 - Mitsubishi

- Validation with parameters from original description and adopted cooling technology:
 - Toshiba: hybrid cooling
 - Graz: film and convective cooling
 - Mitsubishi: none

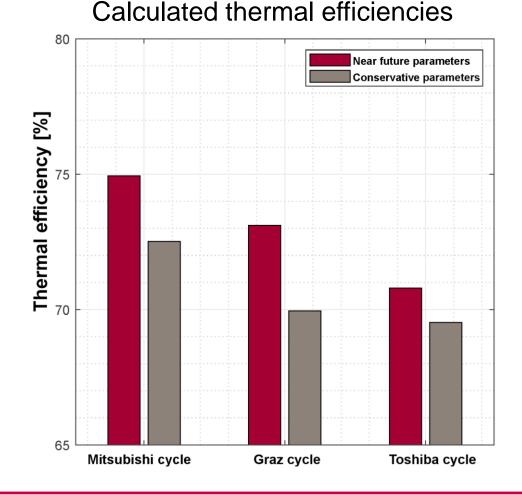
Results of the validation: cycle thermal efficiencies					
Cycles	Original	Own model	Relative error		
Toshiba	72.15 %	70.90 %	-1.73 %		
Graz	70.35 %	70.89 %	0.77 %		
Mitsubishi	73.52 %	74 %	0.62 %		

19th Israeli Symposium on Jet Engines & Gas Turbines

Researching and defining modelling parameters

- Cycles in the literature calculated with different parameters
 - Not comparable
- High parameters assuming fast technological progress
 - Too optimistic
 - Not up to date
- Research and redefinition of uniform and presently achievable parameters

Main cycle parameters	Unit	Near future/ optimistic	Present/ conservative
HTT inlet temperature	[°C]	1700	1600
HPT inlet temperature	[°C]	720	620
HPT inlet pressure	[bar]	310	250
condenser pressure	[mbar]	35	50
LP Turbine wetness	[%]	10 to 12	
compressor pressure ratio	[-]	42	32
H2 und O2 temperature	[°C]	15	



Results of the performance analysis

- Highest efficiencies:
 - Mitsubishi
 - Graz
 - Toshiba

- Highest increase in thermal efficiency:
 - Graz
 - Mitsubishi
 - Toshiba

15

Laboratorium für Strömungsmaschinen

Conclusions

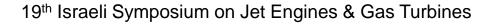
- Hydrogen oxyfuel steam power plants as a solution for reconversion of green hydrogen to electricity
- Cycles can be categorized in **fully** and **partly** condensing cycles
- Selection of the most likely regarding technical limitations, complexity and efficiency
- Results of the performance analysis:
 - Efficiencies > 70 % achievable
 - Fully condensing cycles
 - Lower complexity
 - Safer regarding extraction of unburned H₂ and O₂
 - Partly condensing cycles
 - Highest efficiencies with 75 % for the Mitsubishi cycle
 - High flexibility regarding TIT

Outlook

- Start-up analysis
- Steam generation and availability
- Optimization of the Toshiba cycle through reheating
- Water and hydrogen storage capacity demand
- Research on:
 - Gas turbine design suited for steam as a working fluid
 - Heat Recovery Steam Generator material
 - Creep resistant material
 - Hydrogen detection in steam
 - Combustion chambers for stoichiometric combustion in steam
- Research at the LSM in Hamburg: designing and building a prototype cycle at a small scale

Universität der Bundeswehr Hamburg

Thank you for your attention.


Authors: David Bocandé, M. Sc. Prof. Dr.-Ing. Markus Schatz

Chair of Fluid Machinery for Energy Technology Helmut Schmidt University University of the Federal Armed Forces Hamburg Prof. Dr. Markus Schatz

Literature

- 1. JERICHA, HERBERT; FESHARAKI, M. The Graz Cycle—1500° C Max Temperature Potential H2-O2 Fired CO2 Capture With CH4-O2 Firing. *Power*, 1995, 10433. Jg., Nr. 11502, S. 2495.
- 2. WOJKOWSKY, H., et al. Stromerzeugung aus Wasserstoff. In: Hydrogen as an Energy Vector. Springer, Dordrecht, 1980. S. 547-564.
- 3. JERICHA, H. Efficient steam cycles with internal combustion of hydrogen and stoichiometric oxygen for turbines and piston engines. *International journal of hydrogen energy*, 1987, 12. Jg., Nr. 5, S. 345-354.
- 4. ET, NEDOWEN. International Clean Energy Network Using Hydrogen Conversion. 1996.
- 5. International Clean Energy Network Using Hydrogen Conversion (WE-NET). 1994 Annual Summary Report on Rsults (1995)
- 6. CICCONARDI, S. P., et al. A steam cycle with an isothermal expansion: the effect of flowvariation. *International journal of hydrogen energy*, 1999, 24. Jg., Nr. 1, S. 53-57.
- 7. SUGISITA, H., et al. A study of thermodynamic cycle and system configurations of hydrogen combustion turbines. *HYDROGEN ENERGY PROGRESS*, 1996, 2. Jg., S. 1851-1860.
- 8. SUGISHITA, H.; MORI, H.; UEMATSU, K. A study of advanced hydrogen/oxygen combustion turbines. In: *Hydrogen Power: Theoretical and Engineering Solutions*. Springer, Dordrecht, 1998. S. 511-516.
- 9. BANNISTER, Ronald L., et al. Hydrogen-Fueled Combustion Turbine Cycles. In: *Turbo Expo: Power for Land, Sea, and Air*. American Society of Mechanical Engineers, 1996. S. V003T08A003.
- 10. BANNISTER, Ronald L.; NEWBY, Richard A.; YANG, Wen-Ching. Development of a hydrogen-fueled combustion turbine cycle for power generation. In: *Turbo Expo: Power for Land, Sea, and Air.* American Society of Mechanical Engineers, 1997. S. V002T05A003.
- 11. BANNISTER, Ronald L.; NEWBY, Richard A.; YANG, Wen-Ching. Final report on the development of a hydrogen-fueled combustion turbine cycle for power generation. In: *Turbo Expo: Power for Land, Sea, and Air.* American Society of Mechanical Engineers, 1998. S. V003T05A001.
- 12. JERICHA, Herbert, et al. Thermal steam power plant fired by hydrogen and oxygen in stoichiometric ratio, using fuel cells and gas turbine cycle components. In: *Turbo Expo: Power for Land, Sea, and Air.* 2010. S. 513-520.
- 13. SANZ, Wolfgang, et al. Adapting the zero-emission Graz Cycle for hydrogen combustion and investigation of its part load behavior. *International Journal of Hydrogen Energy*, 2018, 43. Jg., Nr. 11, S. 5737-5746.
- 14. DYBE, Simeon; TANNEBERGER, Tom; STATHOPOULOS, Panagiotis. Second law analysis of an energy storage system consisting of an electrolysis plant and the graz cycle with internal h2/o2 combustion. *Journal of Engineering for Gas Turbines and Power*, 2019, 141. Jg., Nr. 11.
- 15. SCHOUTEN, Bram; KLEIN, Sikke. The Optimization of Hydrogen Oxygen Cycles. In: *Turbo Expo: Power for Land, Sea, and Air.* American Society of Mechanical Engineers, 2020. S. V005T06A007.
- 16. FUNATSU, T.; FUKUDA, M.; DOHZONO, Y. Start Up Analysis of a H2-O2 Fired Gas Turbine Cycle. In: *Turbo Expo: Power for Land, Sea, and Air.* American Society of Mechanical Engineers, 1997. S. V002T08A017.
- 17. FUKUDA, Masafumi; DOZONO, Yoshikazu. Double reheat Rankine cycle for hydrogen-combustion, turbine power plants. *Journal of Propulsion and Power*, 2000, 16. Jg., Nr. 4, S. 562-567.
- 18. MILEWSKI, Jarosław. Hydrogen utilization by steam turbine cycles. Journal of Power Technologies, 2015, 95. Jg., Nr. 4.

