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No credible pathway to 1.5°C in place
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Plasma Chemistry and Ammonia

-

Plasma capabilities:
» Enhance ignition
Stabilize combustion - wider flammability limits
Reduce NOx emissions
On-demand and flexible
Small % of combustion energy

Problems with burning ammonia:
» Resistant to ignition

» Low flame speed (=7 cm/s)
High NOx emissions

Narrow flammability limits
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Some experimental studies: -
« Choe et al. (2021, 2022): ns pulsed discharge in a swirl :
combustor using NH/air: wﬂ?—? ——
- Lean blow-off extension J el
* NOXx reduction at lean mixtures @ IS S
I

* Linetal. (2022), Tang et al. (2022): GAP burner with stable
flames and low NOXx

[ ) (s s o

Some numerical studies: ior:oe et al., Combust. Flame 228 (2021)

« Shioyoke et al. (2018): increased laminar flame speed with oo TT——e—a _ iGNTION
plasma reforming -

« Faingold and Lefkowitz. (2021, 2022): enhanced flammability
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Two-step plasma reforming & ignition simulations

1. Plasma reforming to H, and other species (e.g. NH,)
* 0D plasma chemistry of NH;/O,/N,
« Combination of ZDPlaskin and Chemkin

» Extension of Faingold & Lefkowitz, PROCI 2021 model to
include N, dilution

2. All excited species quenched
» Neutral species maintained, including radicals
3. Reformates injected into “engine”
« 0D ignition simulations, P =5 MPa, T;= 925K, ¢ =1

« Cantera PSR using Xiao, Valera-Medina, and Bowen 2017
model

Inputs

Plasma
Reformer

ZDPlaskin +
Chemkin

Reformates

Quench

Engine

Cantera PSR
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E/N=180 Td, E,,=0.5 m)/cm? E/N=180 Td, Ej,=1 mj/cm?®  E/N=360 Td, Epp=0.5 mjcm?®
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Major species and temperature evolution of stoichiometric NH,;/O,/N, reforming
« Pulse repetition frequency, PRF: Determines residence time t
« Low PRF =7 T, minor effect on species distribution
« High PRF =7 |, limit at T > Tigpition
« PRF =200 kHz is reasonable for 10 ms residence time
- Energy per pulse, E,,: Halves reforming time fore,, = 0.5 — 1 mJ/cm?
* Reduced electric field, E/N: No significant effect on reforming for E/N = 180 — 360 Td
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« Minor species and temperature evolution

« E/N=180Td
* PRF =200 kHz
* E,,=05 mJ/cm3

« Conditions for optimal reforming for up to

10 ms residence time

« Two conditions chosen for ignition delay

predictions:
* 1.5 ms: maximize O
* 5 ms: maximize H,

| Unreformed |15ms _[5ms__

Tign (S) 0.58 0.45
Taq (K) 2860 2438
Xno (ppm) 5000 1400

0.01

2233
200

Mole fraction

NH,/O,/N, Plasma Reforming
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Ignition of a 5 ms reformed mixture:
» 50-fold reduction in ignition delay

25-fold reduction in Nox

* Energy input from1000 pulses = 4% of energy from

combustion

« Some loss of enthalpy
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& Reformed Species Sensitivity Analysis

CD

To determine sensitive species, we
calculate IDT excluding different

. Reformed
reforming products: nisture TN
* H, and NH, account for most Only H2 and ey
reduction of ignition delay NH2 included
* ~ 8000 ppm H, Oy e
included
 ~ 1100 ppm NH, netee
! . All ref t
« All other species from reforming do occlndod -
not have significant impact
1 10 100 1000
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102 107
Reforming of pure ammonia — main products are H, 107
and NH,: 107 | 1070 -
« E/N =180 Td o (1077 2
_10—12 ><
* PRF =200 kHz 10-+ o
- E,, =0.5mJ/cm?3 [ 10-16
« N =1-1500 pulses 1foj ‘

« At least 1000 pulses needed to significantly effect
ignition delay

« Energy input from 1500 pulses = 750 mJ/cm?3 = 6% of
energy from combustion
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Numerical investigation found:
g Faraday CagePl - Reactants | Mixing |, m
« Ammonia reforming in DBD can reduce s Sremeer e
ignition delay by x50 at engine-relevant s e )
conditions ‘
Products |— =
* The key species affecting ignition delay . [, )
time are H, and NH, e s A ]E Lo )
. —_ % i ‘I, uléer | N,
» NO, is reduced due to additional NH, | sassamoie ‘ ‘ 3|8 SR e
system 213
and HO, present after plasma ! Faraday Cage
reforming ML -
Pump Digital
‘ ontro
NeXt Steps : [ Pulse Ginerator ] D gystteml
System Control
Oscilloscope .

 Validate model experimentally in a well-
stirred, homogenous plasma reactor
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Building a plasma-ammonia combustion kinetic model "4
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Excitation and ionization by electron collision

O2 Phelps and Pitchford 1985
N, Phelps 1991
NH3 Hayashi 1987
Excited species reactions
H2/N2/NH3 Carrasco, Herrero, and Tanarro 2012
- NH3/O2 Ling Wang et al. 2004
NH3(v) reactions Calculated by theory from Fridman 2008

Additional N,(v) reactions Calculated by theory from Kable and Knight (2003)

~Neutral ground state reactions
NH3/O2/N2 Xiao, Valera-Medina, and Bowen 2017
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« E/N=180Td or 360 Td

» Shifts electron collisions to
target NH; vibrational
excitation or dissociation

« PRF=5-500 kHz
* Range of plasma PRF
available for experiments
* E,,=0.5-1mJ/cm?

» Pulse energies realistic for
DBD discharges with diffuse
plasma

Reaction rate (m?3/s)

180 Td
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360 Td
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e+NHs = e+NH,+H
e+NH; » e+NH+2H
e+NH; = e+e+NH7

e+NHs = e+NH5(v2)
e+NHs = e+NH5(v4)
e+NHs = e+NHs(vl,3)
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Plasma Chemistry Solver 4
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Plasma kinetics- ZDPlasKin
dN' .m X
T IO (1)
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Unreformed 1.5 ms reforming 5 ms reforming _ o

0.25 T v R 3000 « Unreformed mixture ignition:

— | — 02 — 02 =
0.20 e T aca L] H20 12500 * Tign — 0.58 s
0.15 1 L — e Tayg = 2860 K
010 R N 2000 * Xno ~ 5000 ppm
ol - 7 B 4 l1soo + Impractical ignition delay
0.05 1 < .

s * 1.5 ms reforming:

3000 * Tjgn =0.45s

T.q = 2438 K

Xno = 1400 ppm

Not significantly different from thermal case

* 5 ms reforming:

102

L0-3 1 r2500

Mole fraction

L0 1500
Tign = 0.01 s
2000 & . T,q=2233K
10-3 — 3000
— (N)HZ — ggz 1 | — NH2  — OH — NH2 — OH — * Xno = 200 ppm

e I l— o0 — HO2 R — [ . .. .l
S I I I ] — ¥ " 2500 « 50-fold reduction in ignition delay
i e e  25-fold reduction in Nox
1071 || e * Energy input from1000 pulses = 4% of energy

from combustion
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« E/N =180 Td or 360 Td bl -
« PRF =5 -500 kHz o
» e,,=0.5and 1 mJ/cm3 :
- e
* N=700 pulses.
« To compare between similar energy inputs, S :
each reforming simulation ran for the same () 100
amount of pulses and varying residence [
. P o—o——o— — S
times. . S
10! - 8
« Conversion to H, increases with e, and E/N, but 2 i v o . )
not strong function of PRF (apart from residence - - ) )
1072 1 -~ epp=0.5 m)/cm3, E/N=180 Td

time considerations) ~+~ epp=1 mjicm3, E/N=180 Td

—#— epp=0.5 m)/cm3, E/N=360 Td
=+ epp=1 mj/cm3, E/N=360 Td
=== unreformed

10- 3 ' T T T
100 200 300 400 500
PRF (kHz)
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* Path flux analysis at 10% tjgy,

for thermal and plasma
reforming

« Overall rates x200 for plasma
case

« Most important reaction:

« Pathways of NO consumption
are most sensitive in system

NO + NH, — N, + H,O Terminating
NO + NH, — NNH + OH Branching

NH,

. +H

—P»| +OH

_..+HNO
> +NO,

2 e +
<EFE OH
= = __ & 999
o =] Ay (o} 97%
Wo%%

oo] s oo}
+|+|+]+

+ + +
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+ + + 4 T

NO, |HO, |NO NO NO,

18% |10% |20% |7% o

17% [26% |29% [9% |4%
v \/
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N, OH H,0

+

+ +
HO, |NH, |NO,
149 149 69%
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\/

+
0,
34%

1+ T
H,0,|NH,[HONO

-
HO,

HNO

¥ +

O, NO
92% | 8%
100% | 0%
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HO,
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—> Thermal
—> Plasma
+ +
NO, 0,
8% 92%
0% 100%
+HONO |+HO,
+NH, 40% 50% o +
>z NO N _pf+
* O, 117 307 | & o, Plon NNH
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H,0, +M HO, +NO  NH, + NO H+0,+M NNH+0, HNO+0O, H,NO+O, H
11% 41% 7% 43% 11% 46% 0% 2 NNH + O
15% 34% 10% 3% 11% 64% 22% + +
NH, OH MINOR
HO2 + NH2 HONO + M 8400 16”0 100%
10% 19%
27% 13%
v v v +M [+No[+NO_[+HNO +NH, [+H,0 [+N,0
+OH [+H,NO [+NO, [+NO [+NNH H
[+NH; | OH + + |+ |+
. A . . + + 0, +M|NO,| 0, [H,NO
NH,\ NO, 94% 4% |1% |1%
i I el 10% \ 44% 100% |0% |0% [0%
(o] o 4 /0 19% 2 0/0
2% 100% [0% >
N Hv OH + H,NO OH +NO, H02 +NO_[+O [+NH,
—> Thermal i I—f E) OH
— 2
Plasma 2o €M

* >90% of OH formed from HO, (or HO, dependent paths: H,O, and HONO)
* Major shift in source of HO, from thermal case to plasma case

« Caused by presence of H,
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Terminating
Path reduced
Terminating

NO, formed
Path increased
H atom path
NO, consumed

Path reduced

Path reduced
Branching

Reaction Sensitivity Analysis

NH2 + NO <=> H20 + N2

H2NO + NH2 <=> HNO + NH3

NH2 + NO2 <=> H20 + N20O

HO2 + NO <=> NO2 + OH

HNO + NO2 <=> HONO + NO

H + NH3 <=> H2 + NH2

H2NO + NO2 <=> HNO + HONO

HO2 + NH2 <=> H2NO + OH

NH2 + NO2 <=> H2NO + NO

H2NO + 02 <=> HNO + HO2

HNO + 02 <=> HO2 + NO

NH2 + NO <=> NNH + OH
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®thermal
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