

Plasma assisted reforming for enhanced ammonia ignition and reduced NOx emissions

Galia Faingold and Joseph Lefkowitz

Technion – Israel Institute of Technology

19th Israeli Symposium on Jet Engines and Gas Turbines

Haifa, Israel

November 17th, 2022

No credible pathway to 1.5°C in place

Ammonia for Energy Storage

- Renewable energy: solar and wind are cheap but intermittent
- > Storage is key in the transition
- ➤ Chemical storage of H₂ in NH₃:
 - Carbon free
 - High energy density
 - Easily stored, stable
 - Relatively safe

Plasma Chemistry and Ammonia

Problems with burning ammonia:

- Resistant to ignition
- ➤ Low flame speed (~7 cm/s)
- High NOx emissions
- Narrow flammability limits

Plasma capabilities:

- > Enhance ignition
- Stabilize combustion wider flammability limits
- Reduce NOx emissions
- On-demand and flexible
- Small % of combustion energy

Background: PAC Ammonia

TECHNION

Some experimental studies:

- Choe et al. (2021, 2022): ns pulsed discharge in a swirl combustor using NH₃/air:
 - Lean blow-off extension
 - NOx reduction at lean mixtures
- Lin et al. (2022), Tang et al. (2022): GAP burner with stable flames and low NOx

Some numerical studies:

- Shioyoke et al. (2018): increased laminar flame speed with plasma reforming
- Faingold and Lefkowitz. (2021, 2022): enhanced flammability and shortened ignition delay time, reduced NOx
- Taneja and Yang (2022): shorter ignition delay and reduced NOx

Choe et al., Combust. Flame 228 (2021)

Faingold and Lefkowitz, PRCI 38 (2021)

Plasma-reforming of Ammonia and Mixtures

Two-step plasma reforming & ignition simulations

- 1. Plasma reforming to H₂ and other species (e.g. NH₂)
 - 0D plasma chemistry of NH₃/O₂/N₂
 - Combination of ZDPlaskin and Chemkin
 - Extension of Faingold & Lefkowitz, PROCI 2021 model to include N₂ dilution
- 2. All excited species quenched
 - Neutral species maintained, including radicals
- Reformates injected into "engine"
 - 0D ignition simulations, P = 5 MPa, T_i = 925 K, ϕ = 1
 - Cantera PSR using Xiao, Valera-Medina, and Bowen 2017 model

Plasma Parameters for Reforming

Major species and temperature evolution of stoichiometric NH₃/O₂/N₂ reforming

- Pulse repetition frequency, PRF: Determines residence time τ
 - Low PRF = τ 1, minor effect on species distribution
 - High PRF = $\tau \downarrow$, limit at $\tau > \tau_{\rm ignition}$
 - PRF = 200 kHz is reasonable for 10 ms residence time
- Energy per pulse, E_{pp} : Halves reforming time for $e_{pp} = 0.5 \rightarrow 1 \text{ mJ/cm}^3$
- Reduced electric field, E/N: No significant effect on reforming for E/N = 180 → 360 Td

NH₃/O₂/N₂ Plasma Reforming

- Minor species and temperature evolution
 - E/N = 180 Td
 - PRF = 200 kHz
 - $E_{pp} = 0.5 \text{ mJ/cm}^3$
- Conditions for optimal reforming for up to 10 ms residence time
- Two conditions chosen for ignition delay predictions:
 - 1.5 ms: maximize O₃
 - 5 ms: maximize H₂

	Unreformed	1.5 ms	5 ms
$ au_{ m ign}$ (s)	0.58	0.45	0.01
T _{ad} (K)	2860	2438	2233
X_{NO} (ppm)	5000	1400	200

Ignition of a 5 ms reformed mixture:

- 50-fold reduction in ignition delay
- 25-fold reduction in Nox
- Energy input from 1000 pulses \approx 4% of energy from combustion
- Some loss of enthalpy

Reformed Species Sensitivity Analysis

To determine sensitive species, we calculate IDT excluding different reforming products:

- H₂ and NH₂ account for most reduction of ignition delay
 - \approx 8000 ppm H₂
 - \approx 1100 ppm NH₂
- All other species from reforming do not have significant impact

NH₃ Plasma Reforming

Reforming of pure ammonia – main products are H₂ and NH₂:

- E/N = 180 Td
- PRF = 200 kHz
- $E_{pp} = 0.5 \text{ mJ/cm}^3$
- N = 1-1500 pulses
- At least 1000 pulses needed to significantly effect ignition delay
- Energy input from 1500 pulses = 750 mJ/cm³ \approx 6% of energy from combustion

Conclusions, Current & Future Work

Numerical investigation found:

- Ammonia reforming in DBD can reduce ignition delay by x50 at engine-relevant conditions
- The key species affecting ignition delay time are H₂ and NH₂
- NO_x is reduced due to additional NH₂ and HO₂ present after plasma reforming

Next steps:

 Validate model experimentally in a wellstirred, homogenous plasma reactor

Thanks for your Attention!

The Combustion and Diagnostics Lab Group

Work funded in part by German-Israeli Foundation for Scientific Research and Development, Grant Number I-2540-405.10/2019

Building a plasma-ammonia combustion kinetic model

Excitation and ionization	n by electron collision	
O ₂	Phelps and Pitchford 1985	
N_2	Phelps 1991	
NH ₃	Hayashi 1987	
Excited species reaction	S	
H ₂ /N ₂ /NH ₃	Carrasco, Herrero, and Tanarro 2012	
NH3/O2	Ling Wang et al. 2004	
NH ₃ (v) reactions	Calculated by theory from Fridman 2008	
Additional N ₂ (v) reactions	Calculated by theory from Kable and Knight (2003)	
Neutral ground state rea	ctions	
NH3/O2/N2	Xiao, Valera-Medina, and Bowen 2017	

Plasma Reforming Conditions

- E/N = 180 Td or 360 Td
 - Shifts electron collisions to target NH₃ vibrational excitation or dissociation
- PRF = 5 500 kHz
 - Range of plasma PRF available for experiments
- $E_{pp} = 0.5 1 \text{ mJ/cm}^3$
 - Pulse energies realistic for DBD discharges with diffuse plasma

Plasma Chemistry Solver

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = \sum_{j=1}^{j_{\max}} Q_{ij}(t)$$

$$P_{\rm ext} = P_{\rm elec} + P_{\rm gas} + P_{\rm chem}$$

$$P_{\rm ext} = j' \times E = e \times N_e \times v_{\rm dr} \times E = e \times N_e \times N^2 \times \mu_e \times (E/N)^2$$

$$P_{\text{elec}} = \frac{3}{2} \text{ kB } \frac{\text{d}(N_{\text{e}} T_{\text{e}})}{\text{d}t}$$

$$P_{\text{gas}} = \frac{\gamma}{\gamma - 1} \text{ kB } \frac{\text{d}(NT)}{\text{d}t}$$

$$P_{\text{chem}} = \sum_{i} \varepsilon_{i} \frac{dN_{i}}{dt}$$

$$(\rho_i^{n+1} - \rho_i^n) / \Delta t = \omega_i^{\text{plasma}} + \omega_i^{\text{combustion}}$$

$$(T^{n+1} - T^n)/\Delta t = \Delta T_{\text{plasma}} + \Delta T_{\text{combustion}}$$

$$(\rho_i^{n+1} - \rho_i^*) / \Delta t = \omega_i^{\text{plasma}}$$

$$(\rho_i^* - \rho_i^n) / \Delta t = \omega_i^{\text{combustion}}$$

$$(T^{n+1} - T^*) / \Delta t = \Delta T_{\text{plasma}}$$

$$(T^* - T^n) / \Delta t = \Delta T_{combustion}$$

$$(10)$$

Panchachavi at al. Rullatin of the American Physical Society 53 (2008)

Reformed NH₃/O₂/N₂ Ignition

Unreformed mixture ignition:

- $\tau_{\rm ign} = 0.58 \, \rm s$
- $T_{ad} = 2860 \text{ K}$
- $X_{\rm NO} \approx 5000 \, \rm ppm$
- Impractical ignition delay

• 1.5 ms reforming:

- $\tau_{\rm ign} = 0.45 \ {\rm s}$
- $T_{ad} = 2438 \text{ K}$
- $X_{\rm NO} \approx 1400 \, \rm ppm$
- Not significantly different from thermal case

5 ms reforming:

- $\tau_{\rm ign} = 0.01 \, \rm s$
- $T_{ad} = 2233 \text{ K}$
- $X_{\rm NO} \approx 200 \, \rm ppm$
- 50-fold reduction in ignition delay
- 25-fold reduction in Nox
- Energy input from 1000 pulses ≈ 4% of energy from combustion

NH₃ Plasma Reforming

- E/N = 180 Td or 360 Td
- PRF = 5 500 kHz
- $e_{pp} = 0.5$ and 1 mJ/cm³
- N=700 pulses.
 - To compare between similar energy inputs, each reforming simulation ran for the same amount of pulses and varying residence times.
- Conversion to H₂ increases with e_{pp} and E/N, but not strong function of PRF (apart from residence time considerations)

Path Flux Analysis (Ignition)

- Path flux analysis at 10% $\tau_{\rm ign}$ for thermal and plasma reforming
- Overall rates x200 for plasma case
- Most important reaction:

$$NH_3 + OH \rightarrow NH_2 + H_2O$$

 Pathways of NO consumption are most sensitive in system

$$NO + NH_2 \rightarrow N_2 + H_2O$$
 Terminating

$$NO + HO_2 \rightarrow NO_2 + OH$$
 Propagating

Path Flux and Sensitivity Analysis

- >90% of OH formed from HO₂ (or HO₂ dependent paths: H₂O₂ and HONO)
- Major shift in source of HO₂ from thermal case to plasma case
- Caused by presence of H₂

Reaction Sensitivity Analysis

