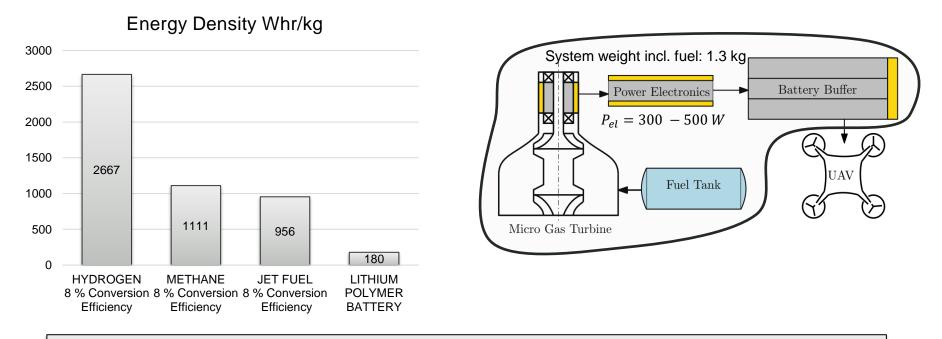
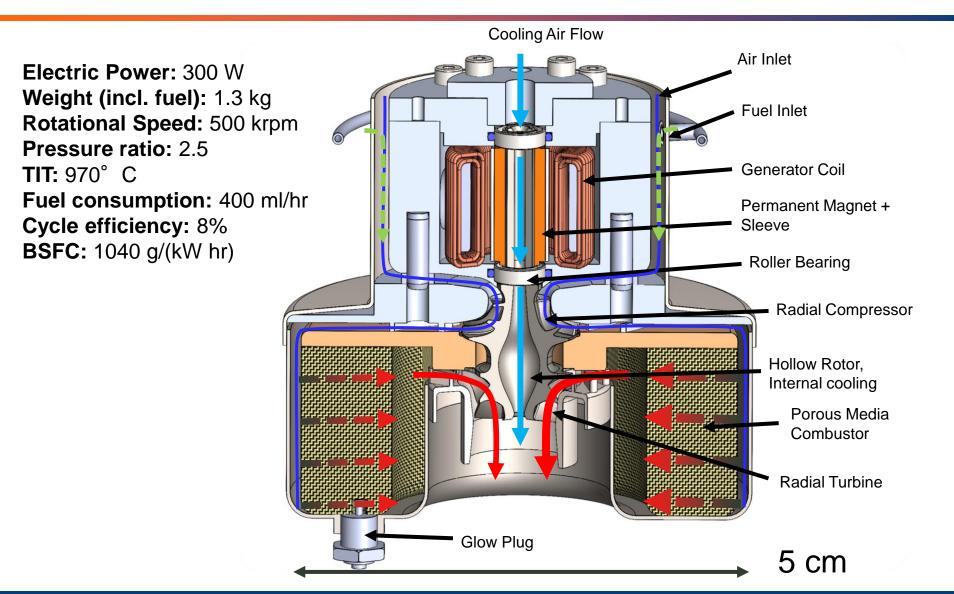
Development of an Additive Manufactured Ultra Micro Turbine

Lukas Badum, PhD Student Supervisor: Assoc. Prof. Beni Cukurel Turbomachinery and Heat Transfer Laboratory



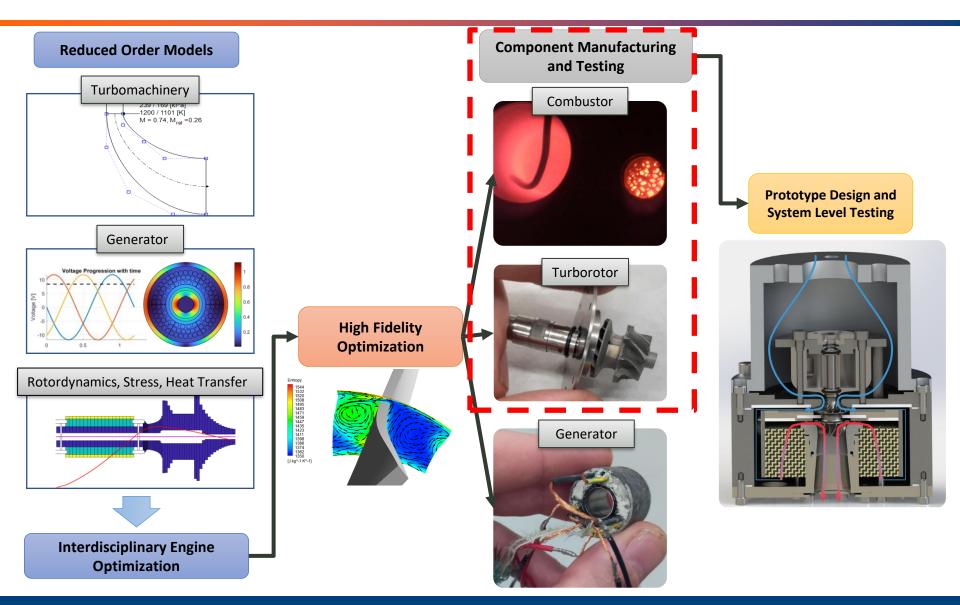
Hydrocarbons: 12-14 kWhr/kg

Lithium polymer batteries (UAV standard): 0.135-0.1801 kWhr/kg



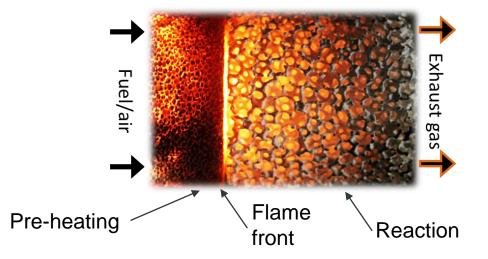
✓ Jet fuel performance improvement factor: 5.3 ✓ Hydrogen performance improvement factor: 14.8

¹Budde-Meiwes et al.: A review of current automotive battery technology and future prospects, *Journal of Automobile Engineering*, *p.761-765*. **2013**



DEVELOPING A MICRO TURBINE FROM SCRATCH

POROUS MEDIA COMBSTION

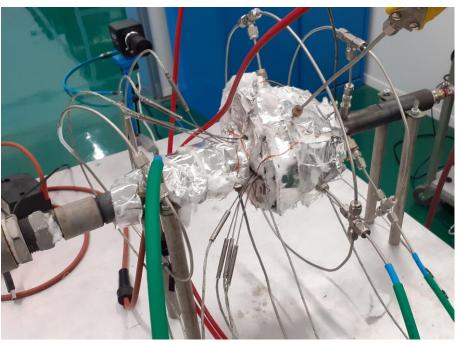


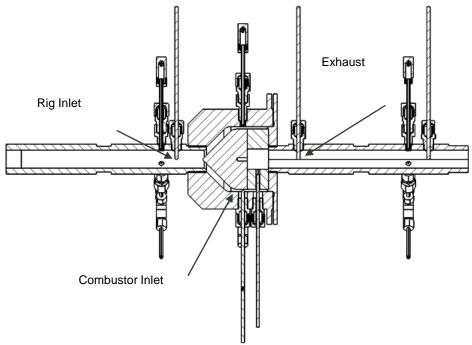
Efficient pre-mixed combustion

- Every 'cell' acts like a flame holder
- No dilution necessary
- Very compact combustor

Low equivalence ratios achievable

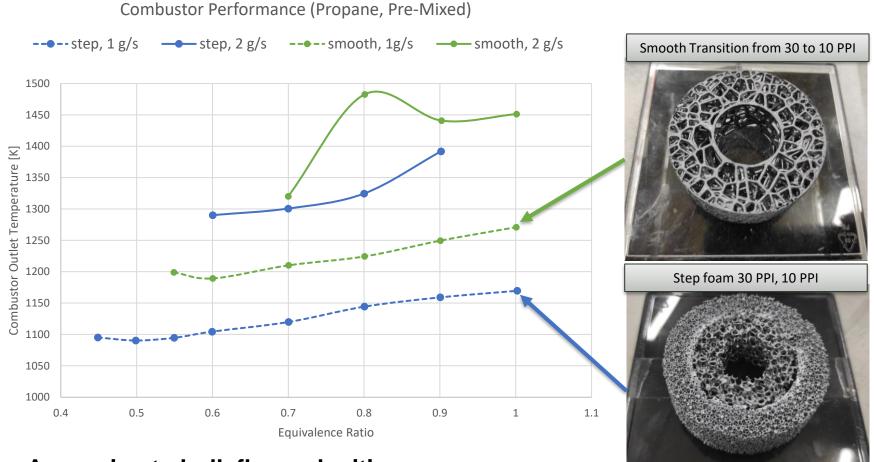
- Radiation and conduction upstream of flame front
- Mixture temperature increases upstream of the flame front
- Laminar flame speed increases



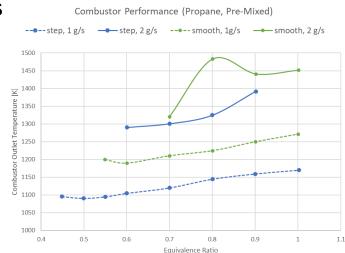


Porous media combustor test rig

- Measurement of various foam geometries
- Measurement of pressure drop
- Insulated combustion chamber
- Pressurized combustion

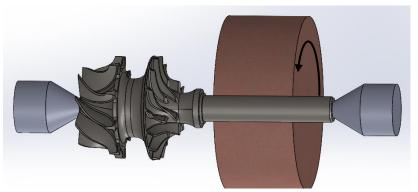


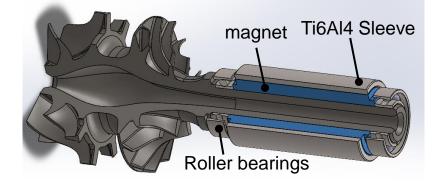
COMBUSTOR TEST RESULTS (PROPANE)


Approximate bulk flow velocities: 1.3 m/s (1 g/s case), 3.2 m/s (2g/s case)

COMBUSTOR TAKEAWAY

- As expected, outlet temperature generally rises with rising equivalence ratio
- Minimum equivalence ratio limited by bulk flow velocity
 - 1.3 m/s: $\phi_{min} = 0.45$ 3.2 m/s: $\phi_{min} = 0.6$
- Pore size distribution needs to be optimized
 - Stepped foam: lower equivalence ratio but also lower efficiency
- Heat losses considerable -> low efficiency
 - Volume to surface effects must be taken into account during design
- Switch to liquid fuel


ROTOR MANUFACTURING



- Monolithic Rotor Geometry
 - Compressor diameter: 16mm
 - Overall length: 40 mm

• Ceramic rotors (Alumina, Zirconia, Silicon Nitride)

- Lithography based additive manufacturing
- Inconel 718 rotors
 - Selective Laser Melting
- Grinding and rotor assembly
 - Grinding between tips, bearing seat dimensional tolerances $5\mu m$
 - Press fitting bearing, magnet and sleeve

PRINT QUALITY COMPARISON

0.16

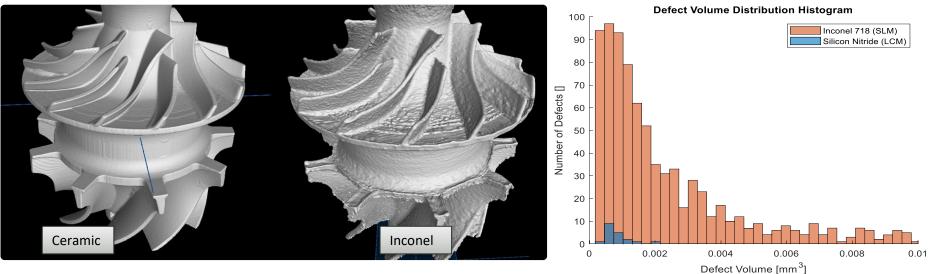
0.12

0.08

0.04

0.00

-0.04

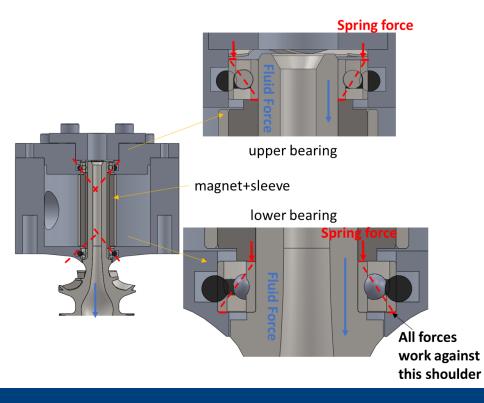

0.12

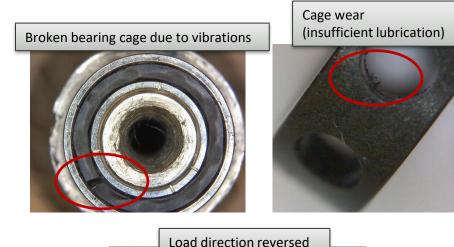
- Dimensional accuracy
 - Maximum deviation 40 μm , average around 20 μm
- Surface roughness
 - Ceramic rotors: 2-3 μm Ra, 13 μm Rz
 - Inconel 718: 8-11 μm Ra

0.00 +0.02 +0.02 +0.01 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.02 +

Defects and artefacts

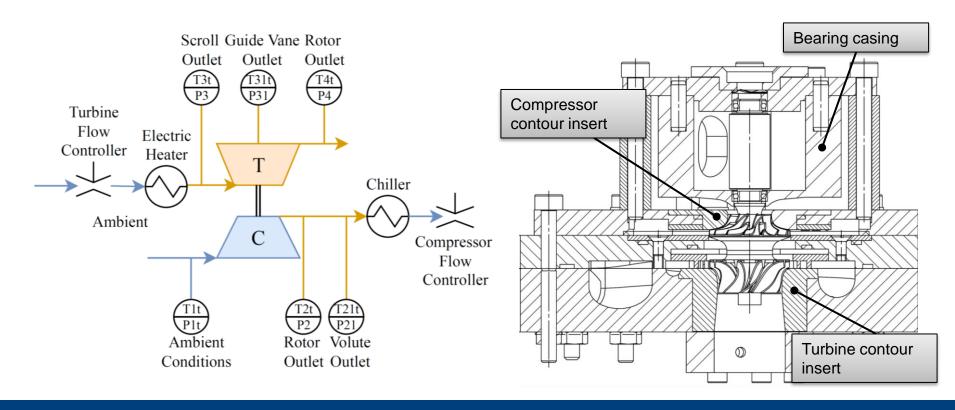
- Inconel geometry very "fuzzy", many defects and artefacts





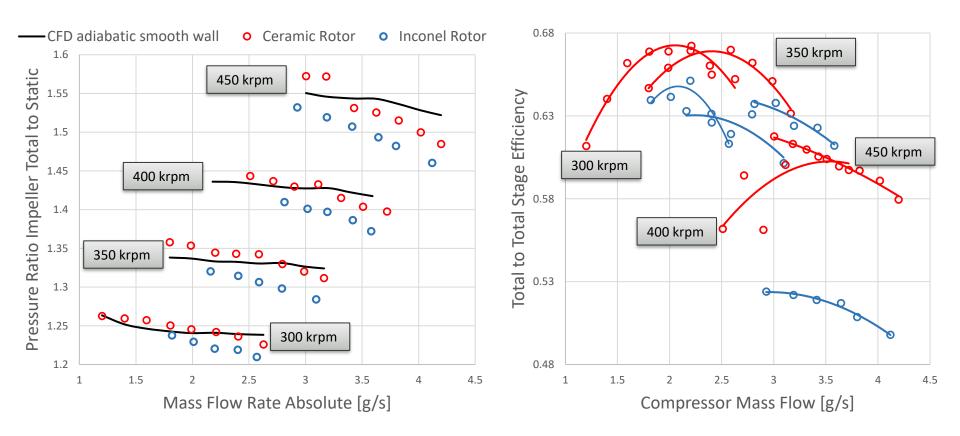
MICRO ROTOR TESTING: CHALLENGES

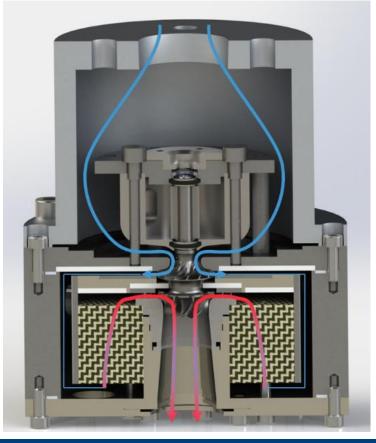
- Stable bearing operation at speeds up to 500 krpm
 - Elastic bearing suspension
 - Avoid overheating
 - "perfect" balancing
 - Angular contact bearings in X-configuration:
 Rotor must be loaded in the right direction always (balance piston)!

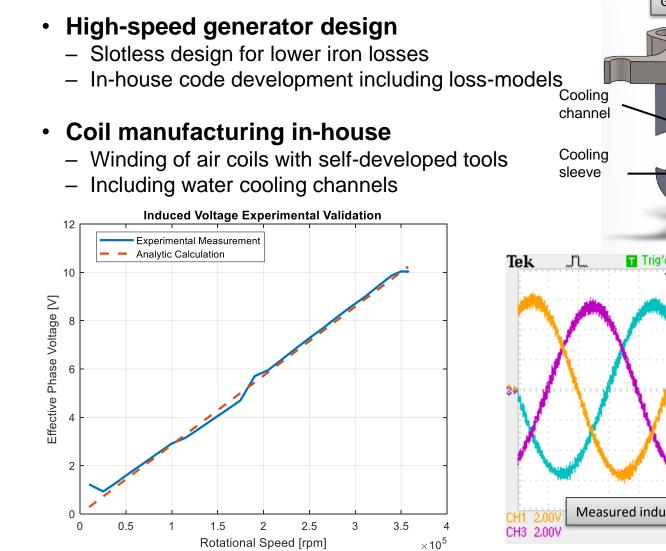

AERODYNAMIC ROTOR TESTING

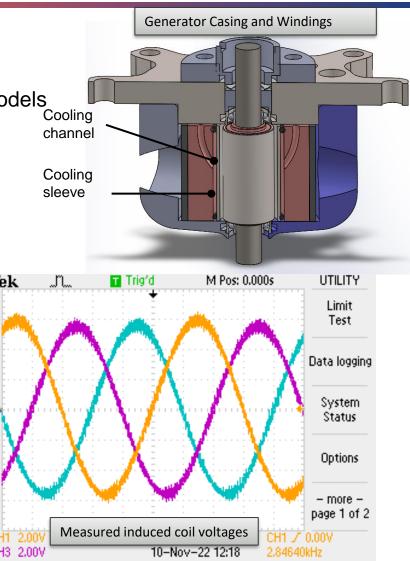
Rotor tip measurement stations (3x)

- Modular test rig development
 - "turbocharger" test rig (turbine drives compressor)
 - Turbine inlet air can be heated (max. 500 C)
 - Measurement of rotor outlet conditions
 - Adjustment of tip clearance possible




- Static pressure measurements match RANS CFD results (rotor)
- Acceptable stage efficiency can be reached
- Diffuser CFD doesn't match measured values (flow separation difficult to predict)
- Ceramic rotor outperforms Inconel rotor


- System Level Prototype Manufacturing and Testing
 - Reverse flow combustor
 - 20 PPI and 30 PPI foam in series
 - Prototype parts are ready...



GENERATOR DEVELOPMENT

TURBOMACHINERY TAKEAWAY

- Manufacturing
 - Inconel (SLM) is easier to post-process
 - ceramic (LCM) has higher quality
- Bearing system requires well thought out design
 - Heat transfer management
 - Elastic suspension
 - Correct load force direction
- Achieved polytropic compressor efficiency: 55-65 %

Questions?

Contributors:

Pavel Kovalyov Michal Amar Felix Schirrecker Daniel Kaganovich