INVESTIGATION OF SPLITTERED TANDEM STATORS FOR HIGHLY-LOADED LOW-ASPECTRATIO TRANSONIC FAN STAGE FOR A SMALLSCALE TURBOFAN

SERCAN ACARER

MECHANICAL ENGINEERING DEPARTMENT iZMIR KATiP ÇELEBİ UNIVERSITY iZMIR/TÜRKIYE

Micro-Turbojet to Turbofan Conversion Via Continuously Variable Transmission: Thermodynamic Performance Study
In this study , the viability, performance, and characteristics of a turbojet-t--turbofan con-
version through the use of a continuously variable transmission (CVT) are investigated

 cial sofware. The comparison indicates high quantitative agreement. Analysing the
results of the turbofan engine equipped with varaile bypass and IT, it is observed
that both the thrust and the efficiency are increased. The autgenented thrust is observed to

Keywords: variable cycle engine, continuously variable transmission, turbojet-turbofan
conversion, thermodynamic cycle modeling

Papers
regarding to the concept

Kobi Kadosh

 Beni Cukurel ${ }^{1}$ Yechiney and Heat Arasister Aaporation,

Mission Analysis and Operational Optimization of Adaptive Cycle Microturbofan Engine in Surveillance and Firefighting Scenarios

The paper regarding to FAN/LPC design

(a) Check tor updates

Original Article

Unified low-pressure compressor concept for engines of future high-speed micro-unmanned aerial vehicles

Figure I. Schematic representation of the concept: (1) LPC (fan), (2) CVT, (3) gas generator without additional turbine, and (4) variable bypass nozzle. ${ }^{10}$

Figure 2. Schematic comparison of the proposed and conventional LP compressors for similar bypass ratio.

THE ENGINE
CAD MODEL

IN-HOUSE DEVELOPED THROUGHFLOW MODEL

WHAT WE COULD ACHIEVE AT THE END?

- Core pressure ratio 1.65 for both cases instead of 1.9-2
- Bypass pressure ratio 1.54 for both cases, as intended

For the hub portion of the stator;
$>$ The required wide-chord (low-aspect-ratio) design,
$>$ transonic speeds at the inlet,
$>$ high stator exit velocity to reduce loading and
$>$ manufacturing constraints
causes excessive pressure losses and the design intent cannot be matched.

CFD VALIDATION ON ROTOR 37 WITH 2.1 PR

GENERATED MESH

Tandem (with Splitter)
Mach

000909 deg overturn

Normal (wide chord with splitter)

THANK YOU FOR LISTENING

Any questions?

